簡易檢索 / 詳目顯示

研究生: 袁知賢
Chih-Hsien Yuan
論文名稱: 有機上轉換元件:原理分析與結構研製
Organic Upconverter: The Analysis of Mechanism and Development of Novel Structure
指導教授: 李志堅
Chih-Chien Lee
口試委員: 范慶麟
Ching-Lin Fan
葉秉慧
Pinghui Sophia Yeh
徐世祥
Shih-Hsiang Hsu
劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 147
中文關鍵詞: 有機上轉換電洞電子串座高效能成像近紅外線解析度
外文關鍵詞: Organic, Upconverter, Hole, Electron, Tandem, High efficiency, Image conversion, Near-Infrared, Resolution
相關次數: 點閱:276下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究論文以開發有機上轉換元件為背景,同時進行運作機制之解析與開發新穎結構。由於上轉換元件具備獨特之波長轉換功能,可將不可見光區段之資訊轉換為肉眼可辨識之影像,因此在生醫或檢測方面具有極被看好之應用潛力。以光吸收後產生激發態與可利用載子為基礎,於論文中驗證電洞供應、電子供應及串座型元件,並且達到文獻發表目前最高之轉換效能,量子效率分別為4.5%、3.6%以及7.1%。另外,為簡化開發流程,研究內開發出獨特之過渡結構‟光敏載子生成單元”作為協助工具,並可與有機太陽能電池之結構相互參照其特性,大幅簡化元件研發流程並可作為材料檢測之先期程序。於原理探討部分,除完整解釋其結構設計、調整原則及優缺特性之外,亦以自行提出之量測法驗證量子效能之極限,藉由內嵌鏡面型結構,將量子效能切分為兩獨立單元之計算,使得未來設計之自由度大幅提升。最終,以影像應用為目標,實際展示其優良之影像顯示特性,線對解析度達到4000 dpi以上,並用以觀測紅外光影像,驗證其穿透微粒效果及靜脈形狀之檢測,證實上轉換元件於生醫辨識與環境影像感測之應用。


In this article, the working principle and efficiency-theory of organic upconverter are investigated in detail. Based on the mechanism of conductive-carriers generation to control the process of photon-carrier-photon conversion, the upconverter utilizes a simple architecture through directly depositing the organic materials of organic light emitting diodes and organic photovoltaic in serious-connection. Anodic, cathodic, and tandem type upconverters will be demonstrated with different arrangements of charge generation layer and light-emitting components. Also, with embedded mirrors, an upconverter which possesses two individual units and ideal calculation of external quantum efficiency is assembled. Not only the high efficiency, but also the different wavelength-conversion will be demonstrated in novel structure development in line with certain innovative theories. Meanwhile, a new ideal of quasi-device, namely, photosensitive-charge-generation unit, is proposed to simplify the process enormously and exceptionally. The real image-conversion application will ultimately be displayed with excellent display properties.

中文摘要 英文摘要 致謝 目錄 圖目錄 表目錄 第一章 引言 第二章 發展背景及文獻回顧 2. 1 有機發光二極體與有機太陽能電池基本結構 2. 2 基本量測單位與品質指標定義 2. 3 研究文獻與開發背景整理 2. 4 有機上轉換元件之發展方向 第三章 實驗程序 3. 1 實驗材料與製程設備 3. 2量測系統 3. 3 製作程序 第四章 研究成果與討論 4. 1 電洞供應與電子供應 4.1. 1 電洞控制有機上轉換元件 4.1. 2 電子控制型元件 4.1. 3 基本元件之調控 4. 2新型測試結構與原理探討 4.2. 1 C60參與之程序機制 4.2. 2 測試型光敏載子生成單元與高效元件 4.2. 3 光敏載子產生層之基本運作程序研究 4. 3 暗電流成因與抑制結構 4.3. 1 暗電流貢獻與其測試意義 4.3. 2 抑制結構 4. 4 串座結構 4.4. 1 全彩上轉換元件與串座結構 4.4. 2 高效能串座元件 4.4. 3 理想最佳PCGU結構 4. 5 嵌入式鏡面 4.5. 1 具光學調整效果之內嵌鏡面結構 4.5. 2 高效能獨立光轉換單元 4.5. 3 內嵌鏡面上轉換元件 4. 6 實際應用 4.6. 1 光轉換之影像應用 4.6. 2 成像品質因素驗證 第五章 總結 5. 1 結論 5. 2 未來方向 參考文獻

1. http://www.oled-info.com/.
2. http://www.gioa-life.com/.
3. Tromberg, B. J., Shah, N., Lanning, R., Cerussi, A., Espinoza, J., Pham, T., Svaasand, L. and Butler, J. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2, 26-40 (2000).
4. Tao, J., Chen, J., Ban, D., Helander, M. G. and Lu, Z. H. Optical up-conversion devices for infrared detection and imaging. Sci. Adv. Mater. 4, 266-281 (2012).
5. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. and Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969-976 (2004).
6. Welsher, K., Liu, Z., Sherlock, S. P., Robinson, J. T., Chen, Z., Daranciang, D. and Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773-780 (2009).
7. Miyake, R. K., Zeman, H. D., Duarte, F. H., Kikuchi, R., Ramacciotti, E., Lovhoiden, G. and Vrancken, C. Vein imaging: a New method of near infrared imaging, where a processed image is projected onto the skin for the enhancement of vein treatment. Dermatol. Surg. 32, 1031-1038 (2006).
8. Pope, M., Kallmann, H. and Magnante, P. Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042-2043 (1963).
9. Tang, C. W. and VanSlyke, S. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913-915 (1987).
10. Chen, C. H., Tang, C. W., Shi, J. and Klubek, K. P. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence. Thin Solid Films 363, 327-331 (2000).
11. Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. and Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151-154 (1998).
12. Tang, C. W. Two‐layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183-185 (1986).
13. Granström, M., Petritsch, K., Arias, A., Lux, A., Andersson, M. and Friend, R. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257-260 (1998).
14. Peumans, P., Uchida, S. and Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158-162 (2003).
15. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911-918 (2004).
16. Xue, J., Uchida, S., Rand, B. P. and Forrest, S. R. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757-5759 (2004).
17. Service, R. Solar energy. Outlook brightens for plastic solar cells. Science (New York, NY) 332, 293 (2011).
18. Cnops, K., Rand, B. P., Cheyns, D., Verreet, B., Empl, M. A. and Heremans, P. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 1-6 (2014).
19. Seo, J.-W., Lee, S.-H. and Lee, J.-Y. Enhancing quantum efficiency of parallel-like bulk heterojunction solar cells. Appl. Phys. Lett. 103, 123301 (2013).
20. Hong, I.-H., Lee, M.-W., Koo, Y.-M., Jeong, H., Kim, T.-S. and Song, O.-K. Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode. Appl. Phys. Lett. 87, 063502 (2005).
21. Kim, S. H., Jang, J. and Lee, J. Y. Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices. Appl. Phys. Lett. 89, 253501 (2006).
22. Michio, M., Yukitoshi, J., Tomonori, A. and Takashi, K. Analysis of Current-Voltage Characteristics of Organic Electroluminescent Devices on the Basis of Schottky Emission Mechanism. Jpn. J. Appl. Phys. 35, 5735 (1996).
23. Sandhu, J. S., Heberle, A. P., Alphenaar, B. W. and Cleaver, J. R. A. Near-infrared to visible up-conversion in a forward-biased Schottky diode with a p-doped channel. Appl. Phys. Lett. 76, 1507-1509 (2000).
24. Ni, J., Tano, T., Ichino, Y., Hanada, T., Kamata, T., Takada, N. and Yase, K. Organic light-emitting diode with TiOPc layer–a new multifunctional optoelectronic device. Jpn. J. Appl. Phys. 40, L948 (2001).
25. Chikamatsu, M., Ichino, Y., Takada, N., Yoshida, M., Kamata, T. and Yase, K. Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device. Appl. Phys. Lett. 81, 769-771 (2002).
26. Russell, K. J., Appelbaum, I., Temkin, H., Perry, C. H., Narayanamurti, V., Hanson, M. P. and Gossard, A. C. Room-temperature electro-optic up-conversion via internal photoemission. Appl. Phys. Lett. 82, 2960-2962 (2003).
27. Luo, H., Ban, D., Liu, H. C., Poole, P. J. and Buchanan, M. Pixelless imaging device using optical up-converter. IEEE Electron Device Lett. 25, 129-131 (2004).
28. Ban, D., Luo, H., Liu, H. C., Wasilewski, Z. R., SpringThorpe, A. J., Glew, R. and Buchanan, M. Optimized GaAs/AlGaAs light-emitting diodes and high efficiency wafer-fused optical up-conversion devices. J. Appl. Phys. 96, 5243-5248 (2004).
29. Ban, D., Han, S., Lu, Z. H., Oogarah, T., SpringThorpe, A. J. and Liu, H. C. Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector. Appl. Phys. Lett. 90, 093108 (2007).
30. Chen, J., Ban, D., Feng, X., Lu, Z., Fathololoumi, S., SpringThorpe, A. J. and Liu, H. Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror. J. Appl. Phys. 103, 103112 (2008).
31. Kim, D. Y., Song, D. W., Chopra, N., De Somer, P. and So, F. Organic infrared upconversion device. Adv. Mater. 22, 2260-2263 (2010).
32. Chen, J., Ban, D., Helander, M. G., Lu, Z. H. and Poole, P. Near‐infrared inorganic/organic optical upconverter with an external power efficiency of> 100%. Adv. Mater. 22, 4900-4904 (2010).
33. Okawa, Y., Naka, S. and Okada, H. Enhancement of electron injection in organic light-emitting diodes with photosensitive charge generation layer. Jpn. J. Appl. Phys. 50, 01BC11 (2011).
34. Kim, D. Y., Choudhury, K. R., Lee, J. W., Song, D. W., Sarasqueta, G. and So, F. PbSe nanocrystal-based infrared-to-visible up-conversion device. Nano Lett. 11, 2109-2113 (2011).
35. Guan, M., Li, L., Cao, G., Zhang, Y., Wang, B., Chu, X., Zhu, Z. and Zeng, Y. Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion. Org. Electron. 12, 2090-2094 (2011).
36. Chu, X., Guan, M., Li, L., Zhang, Y., Zhang, F., Li, Y., Zhu, Z., Wang, B. and Zeng, Y. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization. ACS Appl. Mater. Interfaces 4, 4976-4980 (2012).
37. Chen, J., Tao, J., Ban, D., Helander, M. G., Wang, Z., Qiu, J. and Lu, Z. Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging. Adv. Mater. 24, 3138-3142 (2012).
38. Chu, X., Guan, M., Niu, L., Zeng, Y., Li, Y., Zhang, Y., Zhu, Z. and Wang, B. Fast responsive and highly efficient optical upconverter based on phosphorescent OLED. ACS Appl. Mater. Interfaces 6, 19011-19016 (2014).
39. Kim, D. Y., Lai, T. H., Lee, J. W., Manders, J. R. and So, F. Multi-spectral imaging with infrared sensitive organic light emitting diode. Sci. Rep. 4, 5946 (2014).
40. Harada, K., Edura, T. and Adachi, C. Nanocrystal growth and improved performance of small molecule bulk heterojunction solar cells composed of a blend of chloroaluminum phthalocyanine and C70. Appl. Phys. Express 3, 121602 (2010).
41. Verreet, B., Müller, R., Rand, B. P., Vasseur, K. and Heremans, P. Structural templating of chloro-aluminum phthalocyanine layers for planar and bulk heterojunction organic solar cells. Org. Electron. 12, 2131-2139 (2011).
42. Kim, H. P., bin Mohd Yusoff, A. R., Kim, H. M., Lee, H. J., Seo, G. J. and Jang, J. Inverted organic photovoltaic device with a new electron transport layer. Nanoscale research letters 9, 150 (2014).
43. Tong, X., Lassiter, B. E. and Forrest, S. R. Inverted organic photovoltaic cells with high open-circuit voltage. Org. Electron. 11, 705-709 (2010).
44. Zhang, F., Xu, X., Tang, W., Zhang, J., Zhuo, Z., Wang, J., Wang, J., Xu, Z. and Wang, Y. Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1785-1799 (2011).
45. Wang, Z., Hong, Z., Zhuang, T., Chen, G., Sasabe, H., Yokoyama, D. and Kido, J. High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Appl. Phys. Lett. 106, 053305 (2015).
46. Kim, D. Y., Sarasqueta, G. and So, F. SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer. Sol. Energy Mater. Sol. Cells 93, 1452-1456 (2009).
47. Häming, M., Greif, M., Sauer, C., Schöll, A. and Reinert, F. Electronic structure of ultrathin heteromolecular organic-metal interfaces: SnPc/PTCDA/Ag(111) and SnPc/Ag(111). Phys. Rev. B 82, 235432 (2010).
48. Yu, S., Ahmadi, S., Sun, C., Schulte, K., Pietzsch, A., Hennies, F., Zuleta, M. and Göthelid, M. Crystallization-induced charge-transfer change in TiOPc thin films revealed by resonant photoemission spectroscopy. J. Phys. Chem. C 115, 14969-14977 (2011).
49. Sharma, G. D., BalaRaju, P. and Roy, M. S. Effect of functional groups of acceptor material on photovoltaic response of bulk hetero-junction organic devices based on tin phthalocyanine (SnPc). Sol. Energy Mater. Sol. Cells 92, 261-272 (2008).
50. Liao, L. S., Klubek, K. P. and Tang, C. W. High-efficiency tandem organic light-emitting diodes. Appl. Phys. Lett. 84, 167-169 (2004).
51. Kanno, H., Holmes, R. J., Sun, Y., Kena-Cohen, S. and Forrest, S. R. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer. Adv. Mater. 18, 339-342 (2006).
52. Liao, L. S. and Klubek, K. P. Power efficiency improvement in a tandem organic light-emitting diode. Appl. Phys. Lett. 92, 223311 (2008).
53. Hamwi, S., Meyer, J., Kröger, M., Winkler, T., Witte, M., Riedl, T., Kahn, A. and Kowalsky, W. The role of transition metal oxides in charge‐generation layers for stacked organic light‐emitting diodes. Adv. Funct. Mater. 20, 1762-1766 (2010).
54. Chen, Y., Chen, J., Ma, D., Yan, D., Wang, L. and Zhu, F. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer. Appl. Phys. Lett. 98, 243309 (2011).
55. Chen, Y., Tian, H., Chen, J., Geng, Y., Yan, D., Wang, L. and Ma, D. Highly efficient tandem white organic light-emitting diodes based upon C60/NaT4 organic heterojunction as charge generation layer. J. Mater. Chem. 22, 8492-8498 (2012).
56. Yang, J.-P., Xiao, Y., Deng, Y.-H., Duhm, S., Ueno, N., Lee, S.-T., Li, Y.-Q. and Tang, J.-X. Electric-field-assisted charge generation and separation process in transition metal oxide-based interconnectors for tandem organic light-emitting diodes. Adv. Funct. Mater. 22, 600-608 (2012).
57. Feng, X. D., Huang, C. J., Lui, V., Khangura, R. S. and Lu, Z. H. Ohmic cathode for low-voltage organic light-emitting diodes. Appl. Phys. Lett. 86, 143511 (2005).
58. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626-634 (2003).
59. Ntziachristos, V., Bremer, C. and Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195-208 (2003).
60. Cuper, N. J., Klaessens, J. H. G., Jaspers, J. E. N., de Roode, R., Noordmans, H. J., de Graaff, J. C. and Verdaasdonk, R. M. The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children. Med. Eng. Phys. 35, 433-440 (2013).

QR CODE