簡易檢索 / 詳目顯示

研究生: Muluken Aklilu Solomon
Muluken - Aklilu Solomon
論文名稱: Thermal Solution Process for the Formation of Thin Films for Photovoltaic Materials
Thermal Solution Process for the Formation of Thin Films for Photovoltaic Materials
指導教授: 戴龑
yian tai
口試委員: 蔡大翔
none
王丞浩
none
朱智謙
none
林保宏
none
翁自強
none
王澤元
none
Abhrijit Gunguly
Abhrijit Gunguly
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 159
中文關鍵詞: AZOCZTSTCOThin FIlmSpray pyrolysis
外文關鍵詞: AZO, CZTS, TCO, Thin FIlm, Spray pyrolysis
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

In this work AZO and CZTS thin films were prepared using solution process for solar cell Applications. Aluminum doped zinc oxide (AZO) as transparent electrode to be used for solar cells were deposited on pristine and self assembled monolayer (SAMs) modified glass substrates by chemical spray pyrolysis technique. SAMs with different terminal functional groups such as – CH3, – CF3 and -NH2 were fabricated on glass substrates. The measurement of different parameters showed that modifying the surface of the substrate with the different SAMs exhibits an excellent nucleation site for the crystal growth of the AZO thin film. We demonstrated that crystallinity of AZO films can be improved using self assembled monolayers (SAMs) modified glass substrate. Parameters that are used to verify the quality of the film such as structural, electrical and optical properties were performed by XRD, SEM, Hall measurement and UV-Vis spectrum measurements. From the results we observed that SAM with –CH3 group remarkably improves the quality of the film, while the other groups improve the quality moderately. Our finding suggests a alternative approach of improving the crystallinity of AZO film with spray pyrolysis technique.
CZTS nanoparticle thin films were prepared by spray pyrolysis technique using different solvents. The characterization result reveals that there are many secondary phases rather than pure CZTS and the composition is very far from the stoichiometris ratio. Of course there was a very good improvemment while we were use a mixture of ethylene glycol and methanol solvents. But film thickness is not sufficient for the material to use for solar cell applications. This might be due to the high boiling point of ethylene glycol which is not convenient for arseol generation for the spray system.
Then after we switched to a technique called solvothermal method without vacuum system. Nearly stoichiometric quaternary Cu2ZnSnS4 (CZTS) nanocrystal thin films were successfully synthesized using a low-cost and high reproducibility method. Properties such as crystal structure, morphology, and optical properties of the CZTS nanocrystal thin films were characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and ultraviolet-visible (UV–vis) spectrophotometry. The results showed that the synthesized CZTS nanocrystal thin films had almost single phase, good crystallinity and nearly stoichiometric composition. The X-ray diffraction patterns of (112), (220) and (312) planes showed that the CZTS nanocrystal thin films had a kesterite structure. The UV–vis absorption spectra showed that CZTS nanocrystal thin films had strong absorption in the visible light region. Moreover, the prepared products showed the morphology of nanocrystal thin films \and their energy band gaps 1.52 eV made them promising candidates as absorber materials for photovoltaic applications.


In this work AZO and CZTS thin films were prepared using solution process for solar cell Applications. Aluminum doped zinc oxide (AZO) as transparent electrode to be used for solar cells were deposited on pristine and self assembled monolayer (SAMs) modified glass substrates by chemical spray pyrolysis technique. SAMs with different terminal functional groups such as – CH3, – CF3 and -NH2 were fabricated on glass substrates. The measurement of different parameters showed that modifying the surface of the substrate with the different SAMs exhibits an excellent nucleation site for the crystal growth of the AZO thin film. We demonstrated that crystallinity of AZO films can be improved using self assembled monolayers (SAMs) modified glass substrate. Parameters that are used to verify the quality of the film such as structural, electrical and optical properties were performed by XRD, SEM, Hall measurement and UV-Vis spectrum measurements. From the results we observed that SAM with –CH3 group remarkably improves the quality of the film, while the other groups improve the quality moderately. Our finding suggests a alternative approach of improving the crystallinity of AZO film with spray pyrolysis technique.
CZTS nanoparticle thin films were prepared by spray pyrolysis technique using different solvents. The characterization result reveals that there are many secondary phases rather than pure CZTS and the composition is very far from the stoichiometris ratio. Of course there was a very good improvemment while we were use a mixture of ethylene glycol and methanol solvents. But film thickness is not sufficient for the material to use for solar cell applications. This might be due to the high boiling point of ethylene glycol which is not convenient for arseol generation for the spray system.
Then after we switched to a technique called solvothermal method without vacuum system. Nearly stoichiometric quaternary Cu2ZnSnS4 (CZTS) nanocrystal thin films were successfully synthesized using a low-cost and high reproducibility method. Properties such as crystal structure, morphology, and optical properties of the CZTS nanocrystal thin films were characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and ultraviolet-visible (UV–vis) spectrophotometry. The results showed that the synthesized CZTS nanocrystal thin films had almost single phase, good crystallinity and nearly stoichiometric composition. The X-ray diffraction patterns of (112), (220) and (312) planes showed that the CZTS nanocrystal thin films had a kesterite structure. The UV–vis absorption spectra showed that CZTS nanocrystal thin films had strong absorption in the visible light region. Moreover, the prepared products showed the morphology of nanocrystal thin films \and their energy band gaps 1.52 eV made them promising candidates as absorber materials for photovoltaic applications.

Abstract -----------------------------------------------------------------------------------------------I Acknowledgment ----------------------------------------------------------------------------------III Contents ---------------------------------------------------------------------------------------------IV List of figures-------------------------------------------------------------------------------------VIII List of tables---------------------------------------------------------------------------------------XIV CHAPTER 1------------------------------------------------------------------------------------------1 INTRODUCTION--------------------------------------------------------------------------------1 1.1 The incident solar radiation-------------------------------------------------------------9 CHAPTER 2-----------------------------------------------------------------------------------------14 LITERATURE REVIEW-----------------------------------------------------------------------14 2.1 Overview of Thin film Solar Cells -----------------------------------------------------14 2.1.1 Solution Process for Thin Film Production--------------------------------------23 2.1.1.1 Chemical bath deposition process----------------------------------------24 2.1.1.2 Sol-gel process-------------------------------------------------------------25 2.1.1.3 Spray pyrolysis (SP) Process---------------------------------------------26 2.1.1.4 Solvothermal Process----------------------------------------------------28 2.2 Transparent conducting oxides (buffer Layer) for thin film Heterojunction Solar Cells---------------------------------------------------------------------------------------------30 2.2.1 Motivation for AZO------------------------------------------------------------------37 2.2.2 Surface modification of Substrates by using self assembled monolayers (SAMs)-----------------------------------------------------------------------------------39 2.3 Photovoltaic effects of CZTS absorber material------------------------------------------43 2.3.1 Evolution of the Conversion Efficiency of CZTS-Based Thin Film Solar Cells----------------------------------------------- -----------------------------------------43 2. 3.2 Properties of CZTS --------------------------------------------------------------------44 2.3.3 Defects in CZTS--------------------------------------------------------------------------48 2.3.4 Phase diagram of CZTS ----------------------------------------------------------------51 2.3.4.1 Cu(2)S----------------------------------------------------------------------------------54 2.3.4.2 SnS2------------------------------------------------------------------------------------55 2.3.4.3 ZnS------------------------------------------- ------------------------------------------55 2.3.4.4 Cu2SnS3 (CTS)----------------------------------------------------------------------56 CHAPTER 3-----------------------------------------------------------------------------------------59 EXPERIMENTAL SECTION -------------------------------- --------------------------------59 3.1 Materials and Methods-------------------------------------------------------------------59 3.2 Preparation of AZO and CZTS nanoparticle thin films ---------------------------60 3.3 Characterization Techniques------------------------------------------------------------63 3.4 Instrumental setup-------------------------------------------------------------------------64 3.4.1 Spray pyrolysis Setup---------------------------------------------------------------64 3.4.2 Ultraviolet visible spectrophotometer--------------------------------------------66 3.4.3 Field Emission Scanning Electron Microscopy---------------------------------69 3.4.4 X-Ray Diffractometer-------------------------------------------------------------71 3.4.5 Photoluminescence (PL) ----------------------------------------------------------75 3.4.6 Hall Effect Measurement----------------------------------------------------------77 3.4.7 Contact Angle measurement -----------------------------------------------------78 CHAPTER 4 ----------------------------------------------------------------------------------------80 RESULT AND DISCUSSION--------------------------------------------------------------80 4.1 Self-Assembled Monolayers Assisted Thin Film Growth of Aluminum Doped Zinc Oxide by Spray Pyrolysis method------------------------------------------80 4.1.1 Surface Modification. ----------------------------------------------------------80 4.1.2 Crystal structure analysis------------------------------------------------------82 4.1.3 Morphology analysis -----------------------------------------------------------89 4.1.4 Electrical and Optical property analysis ------------------------------------93 4.2 Synthesis of Cu2ZnSnS4 (CZTS) Nanocrystal Thin Films by Spray pyrolysis ------------------------------------------------------------------------------------------100 4.3 Synthesis of Cu2ZnSnS4 (CZTS) Nanocrystal Thin Films by Solvothermal method ----------------------------------------------------------108 4.4. AZO/ CZTS bilayer -----------------------------------------------------------------117 CHAPTER 5 CONCLUSION------------------------------------------------------------------122 5.1 Future Perspectives ------------------------------------------------------------------123 REFERENCE-------------------------------------------------------------------------------------125 CURRICULUM VITAE-------------------------------------------------------------------------143 AUTHORIZATION------------------------------------------------------------------------------144

R. Foster et al., Solar Energy: Renewable and the Environment, 2010.
A.R. Jha, Ph. D., Solar Cell Technology and Applications, 2010, pp:4
C-F. Lin et al., High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device, Int. J. Mol. Sci. 2011, 12, 476-505
F.Wei, Aluminum Doped Zinc Oxide Thin Film for Organic Photovoltaics. A thesis
submitted in conformity with the requirements for the degree of Master of Applied
Science, University of Toronto, 2010.
H. Flammersberger, Experimental study of Cu2ZnSnS4 thin films for solar cells,
2010
K. Nicol, Deposition and patterning of CZTS as a light absorbing material for solar
applications, 2012.
F. Kreith and D. Yogi Goswami, Hand book of energy efficiency and Renewable
Energy, 2007, pp 1-2
. V. Nelson, Energy and the Environment: Introduction to Renewable Energy,
2011, pp: 1.
B.S.Pawar et al., Effect of complexing agent on the properties of electrochemically
deposited Cu2ZnSnS4 (CZTS) thin films. Applied surface science, 2010, 257, 1786-
1791.
S.M. Pawar et al., Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for
solar cell application. Electrochimica Acta, 2010, 55, 4057– 4061
A. Bosio et al., Thin Film Solar cells: Current Status and Future Trends, 2010.
http://www.greenrhinoenergy.com/solar/radiation/spectra.php.
R. Chandrasekharan, Numerical modeling of tin-based absorber devices for cost-
effective solar photovoltaics: A Dissertation in Energy and Geo-Environmental
Engineering, 2012.
S. J. Fonash, Solar Cell Device Physics, Burlington, MA: Elsevier, Inc., 2010. pp:
2-3.
. http://www.greenrhinoenergy.com/solar/radiation/spectra.php.
. E. K. MICHAEL, Nanocomposite Synthesis and characterization of Kesterite
Cu2ZnSnS4(CZTS) for photovoltaic applications : A Thesis in Materials Science and
Engineering, The Pennsylvania state university, the graduate School. 2012.
. K. L. Chopra et al., Thin-Film Solar Cells: An Overview, Prog. Photovolt: Res.
Appl. 2004, 12, 69- 92.
. V. Nelson, Energy and the environment: Introduction to Renewable Energy, 2011
. J. P. Leit˜ao, et.al., Photoluminescence and electrical study of fluctuating
potentials in Cu2ZnSnS4-based thin films, Physical review B, 2011, 84, 024120-1 -
024120 - 8.
. Shannon C. Riha et al., Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nano crystals. J. AM. CHEM. SOC. 2009, 131, 12054–12055.
. S. C. Riha, tuning optoelectronic properties and understanding charge transport in
nanocrystal thin films of earth abundant semiconducting materials. Doctoral thesis,
2011.

. S. M. Pawar et al., Effect of laser incident energy on the structural, morphological
and optical properties of Cu2ZnSnS4 (CZTS) thin films. Current Applied Physics,
2010, 10, 565-569.
. X. Lu et al., Wurtite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor.
Chem. Commun. 2011, 47, 3141-3143
. S. Das et al., Deposition and characterization of low – cost spray pyrolyzed Cu2ZnSnS4 (CZTS) thin films for large - area high - efficiency heterojunction solar cells. ECS.Trans., 2012, 45, 153-161.
.M.I.Hossain, Prospects of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges. Chalcogenide Letters, 2012, 9, 231-242.
. A. Fischereder et al., Investigation of Cu2ZSnS4 Formation from Metal Salts and Thioacetamide. Chem. Mater., 2010, 22, 339-3406.
. S. K. Saha et al., Cu2ZnSnS4 (CZTS) nanoparticle based nontoxic and earth- abundant hybrid pn-junction solar cells. Phys. Chem. Chem. Phys., 2012, 14, 8090– 8096
. Nakazawa et al., Production of Homogeneous Cu2ZnSnS4 by Splat Solidification in
Microgravity. J. Jpn. Soc. Microgravity Appl, 2011, 28, S72–S77.
. J. J. Scragg et al Studies of Cu2ZnSnS4 films prepared by sulfurisation of
electrodeposited precursors. A thesis submitted for the degree of Doctor of
Philosophy University of Bath, 2010.

. J. B. Li et al., Investigating the Role of Grain Boundaries in CZTS and CZTSSe
Thin Films Solar Cells with Scanning Probe Microscopy.Adv. Mater., 2012, 24,
720-723.
. S. C. Riha et al., Photoelectrochemical Characterization of Nanocrystalline Thin-
Film Cu2ZnSnS4 Photocathodes. Applied Materials and Interfaces, 2011, 3, 58-66.
. V. kheraj et al., Synthesis and characterization of Copper Zinc Tin Sulphide (CZTS)
compound for absorber material in solar - cells Journal of Crystal Growth, 2011,
10, 034.
. J.-S. Seol et al., Electrical and optical properties of Cu2ZnSnS4 thin films prepared
by rf magnetron sputtering process. Solar Energy Materials & Solar Cells, 2003, 75,
155–162
. B.U. Maheshwari et al, Synthesis and Characterization of Cu2ZnSnS4 Thin Film
by Solution Growth Technique for the Application of solar cell. international
journal of advanced renewable energy research, 2012,1, 448-451.
. P.A. Fernandes et.al., Growth and Raman Scattering Characterization of
Cu2ZnSnS4 thin Films. Thin Solid Films, 2009, 517, 2519-2523.
. J.J. Scragg et al.,Towards sustainable materials for solar energy conversion:
Preparation and photoelectrochemical characterization of Cu2ZnSnS4.
Electrochemistry communication, 2008, 10, 639-642.
. H. Yoo et al., Comparative study of Cu2ZnSnS4 film growth. Solar Energy
Materials & Solar Cells, 2011, 95, 239–244.
. J. P. LeLeitao et al., Study of Optical and Structural Properties of Cu2ZnSnS4 thin
Films. Thin Solid Films, 2011, 519, 7390 -7393.
. H.Katagiri et al., preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Solar Energy Materials and Solar Cells, 1997, 49, 407-414.
. H. Wang, Progress in Thin Film Solar Cells Based on Cu2ZnSnS4: Review Article,
Hindawi Publishing Corporation, International Journal of Photoenergy, 2011,
10, 801292
. H. Yoo et al., Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin
films. Current Applied Physics, 2012, 1- 6.
. F. Jiang et al., Preparation and Properties of Cu2ZnSnS4 Absorber and
Cu2ZnSnS4/Amorphous Silicon Thin-Film Solar Cell, Appl. Phys. Express, 2011,
4, 074101-1- 074101-3.
. P.S. Patil , Versatility of chemical spray pyrolysis technique. Materials Chemistry
and Physics, Materials Chemistry and Physics, 1999,59 , 185-198.
. D. Perednis, L. J. Gauckler, Thin Film depsition using Spray Pyrolysis. J. of
Electroceramics 14, 103-111, 2005
. D.Lincot, Solution growth of functional zinc oxide films and nanostructures. MRS
Bulletin, 2010, 35, 778-788.
. T.P. Niesen, M.R. De Guire, Review: deposition of ceramic thin films at low
temperatures from aqueous solutions Solid State Ionics, 2002,151, 61–68
. http://en.wikipedia.org/wiki/Chemical_bath_deposition
. H. Khallaf et al., Characterization of CdS thin films grown by chemical bath
deposition using four different cadmium sources. Thin Solid Films, 2008,516, 7306–
7312 7307.

. Lubomir Spanhel and Marc A. Anderson, Semiconductor Clusters in the Sol-Gel
Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated ZnO
Colloids. J. Am. Chem. SOC. 1991, 113, 2826-2833.
. W. Tang, D. C. Cameron, Aluminum - doped Zinc oxide transparent conductors
depoisted by the sol- gel process. Thin Solid Films, 1994, 238, 83-87.
. K. OKUYAMA et al., Preparation of ZnS and CdS fine particles with different
particle sizes by a spray-pyrolysis method. Journal of Materials Science, 1997,32 ,
1229 -1237
. M.I. Martin, et al., Micro structural and morphological analysis of nanostructured
alumina particles synthesized at low temperature via aerosol route, J. Eur. Ceram.
Soc., 2008, 28, 2487-2494.
. O. MiloSevic , et al., Preparation of fine spherical ZnO powders by an ultrasonic
spray pyrolysis method. Materials Letters, 1994,19, 165-170.
. N. Kamoun et al., Fabrication and characterization of Cu2ZnSnS4 thin films
deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515, 5949–
5952
. M. Caglar, The effects of Al doping on the optical constants of ZnO thin films
Prepared by spray pyrolysis method. J Mater Sci: Mater Electron, 2008, 19, 704–708
. G. Demazeau, Solvothermal processes: new trends in Materials Chemistry,
Journal of Physics: Conference Series, 2008,121, 082003.
. M.Niedrberger, Metal oxide nanoparticles inorganic solvents: Synthesis,
Formation, Assembly and Application, 2009. pp: 26.
. http://en.wikipedia.org/wiki/Transparent_conducting_film

. Yu-Hsien Chou et al., Preparation and characterization of solid-state sintered
aluminum- doped zinc oxide with different alumina contents, Bull. Mater. Sci.,
2011, 34, 477–482.
. H. Saarenp‥a‥a etal., Aluminum doped zinc oxide films grown by atomic layer
deposition for organic photovoltaic devices. Solar Energy Materials &Solar Cells,
2010, 94, 1379–1383.
. A. Klein et al., Transparent conducting oxides for photovoltaics: Manipulation of
Fermi Level, Work Function and Energy band alignment. Materials, 2010, 3, 4892-
4914.
. J. D. Perkins & D. S. Ginley,Transparent conducting oxides for advanced
photovoltaic applications. National Renewable Energy Laboratory, Golden,
COlorado, USA.
. B. Szyszka et al., Development of new transparent conductors and device
applications utilizing a multidisciplinary approach. Thin Solid Films, 2010,
518 3109–3114.
. S. Calnan, A.N. Tiwari, High mobility transparent conducting oxides for thin
film solar cells. Thin Solid Films, 2010,518, 1839–1849.
. http://www.tcd.ie/Chemistry/staff/people/gww/gw_new/research/TCOs/
. M. Wang et al., Optical and photoluminescent properties of sol-gel Al-doped ZnO
thin films, Materials Letters , 2007, 61, 1118–1121
. A. V. SINGH et al., Al-doped zinc oxide (ZnO:Al) thin films by pulsed laser
ablation. J. Indian Inst. Sc., 2001, 81, 527-533.

. D. J. Rogers and F. Hosseini Teherani, ZnO: From Transparent Conducting Oxide
to Transparent Electronics. Encyclopedia of Materials: Science and Technology
ISBN: 978-0- 0804-3152-9, 2010, 1–5.
. K . E . Lee et al., Structural, Electrical and Optical Properties of Sol-gel AZO thin
films. Current Applied Physics, 2009, 9, 683-687.
. Z. Fan et al., Zinc Oxide Nanostructures: Synthesis and Properties, University of
California, Irvine, CA 92697, USA, 2005
. S. O. Kucheyev et al., Ion-beam-produced structural defects in ZnO, Physical
Review B , 2003, 69, 0163-1829,
. http://en.wikipedia.org/wiki/Zinc_oxide
. Dasgupta et al., Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain
Orientation on Conductivity. Chem. Mater., 2010, 22, 4769–4775
. S. Park et al., Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic
solar cells with Al-doped ZnO electrode. Solar Energy Materials & Solar Cells,
2009,93, 1020–1023
. H. Wang et al., Room temperature deposition and properties of ZnO : Al thin films
by nonreactive DC magnetron sputtering. J Mater Sci: Mater Electron, 2008, 19,
1135-1139.
. Oh et al., Transparent conductive Al-doped ZnO films for liquid crystal
displays. J. Appl. Phys., 2006,99, 124505-1 - 124505-4.
. L. Cai et al., High quality Al-doped ZnO thin films deposited using targets
prepared by chemical coprecipitation. P hys. Status Solidi A , 2009, 206, 1461–
1464.
. J. Christopher Love et al., Self-Assembled Monolayers of Thiolates on Metals as
a Form of Nanotechnology. Chemical Reviews, 2005, 105, 1103-1169.
. N. Muskal et al., The electrochemistry of thiol Self-assembled Monolayer ( SAMs)
on a Hanging Meccury Drop Electrode(HMDE). 2000.19, 49-50
. A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chemical
Reviews, 1996, 96 (4).
. C. Belgardt et al.: Self-assembled monolayers on silicon oxide. Phys. Status Solidi
C 7, 2010, 2, 227-231
. N.Chaki et al., Applications of self-assembled monolayers in materials chemistry. Proc.Indian Acad. Sci.(Chem.Sci.), 2001,113, 659-670.
. E. Ruckenstein, Z.F. Li, Surface modification and fictionalization through the
self-assembled monolayer and graft polymerization Advances in Colloid and
Interface Science, 2005,113, , 43–63
. S. LEE et al., Effect of Reaction Temperature on Growth of Organosilane Self-
Assembled Monolayers. Jpn. J. Appl. Phys., 2008, 47, 6442-6447.
. Sharma et al., Discriminate Crystallinities of Tin Doped Indium Oxide Films on
Self-Assembled Monolayers Modified Glass Substrates. Langmuir 2010, 11,
8251– 8255
. Tai et al., Self-assembled monolayers induced inter-conversion of crystal structure
by vertical to lateral growth of aluminium doped zinc oxide thin films.
Chem.Commun. 2011, 47, 1785–1787.
. Fernandes et al., Admittance spectroscopy of Cu2ZnSnS4 based thin film solar
cells. Applied Physics Letters, 2012,100, 233504-1-233504-4.

. N.Moritake et al., preparation of Cu2ZnSnS4 thin films solar cells under non
Vacuum condition. Phys. Status Solidi C 2009, 6, 1233-1236.
. H. Katagiri et al., Development of CZTS-based thin film solar cells. Thin Solid
Films, 2009, 517, 2455–2460
. Y. Zhou et al., Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell:
Morphology Control and Growth Mechanism , J. Phys. Chem. C. 2011, 115,
19632–19639.
. A. Ennaoui et al., Cu2ZnSnS4 thin film solar cells from electroplated precursors:
Novel low-cost perspective. Thin Solid Films, 2009, 517, 2511-2514,
. K.Oishi et al., Growth of Cu2ZnSnS4 thin films on Si(100) substrates by multisource evaporation. Thin Solid Films, 2008, 517, 1449-1452.
. H. Katagiri et al., Development of thin film solar cell based on Cu2ZnSnS4 thin
films. Solar Energy Materials & Solar Cells, 2001, 65, 141–148.
. W.-HZhou et al., Solvothermal synthesis of flower – like Cu2ZnSnS4 nanostructures
and their application as a node materials for lithium ion batteris. Chemical Physics
Letters, 2012, 546, 115-119.
. K. Maeda et al., Dependence on Annealing Temperature of Properties of
Cu2ZnSnS4 Thin Films Prepared by Sol–Gel Sulfurization Method. Japnese
Journal of Applied Physics, 2011, 50, 01BE10-1 -01BE10-5.
. H. Katagiri, Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2005, 480, 426–432
. M. T. Htay et al., A Cadmium-Free Cu2ZnSnS4/ZnO Hetrojunction Solar Cell
Prepared by Practicable Processes. Japanese Journal of Applied Physics, 2011, 50,
032301-1- 032301-4.

. K. Tanaka et al., Cu2ZnSnS4 thin film solar cells prepared by non-vacuum
processing. Solar Energy Materials & Solar Cells, 2009, 93, 583–587
. K. Maeda et al., Influence of H2S concentration on the properties of Cu2ZnSnS4
thin films and solar cells prepared by sol–gel sulfurization. Solar Energy Materials
& Solar Cells, 2011, 95, 2855–2860
. Y. Cui et al., Synthesis and characterization of co-electroplated Cu2ZnSnS4 thin
films as potential photovoltaic material. Solar Energy Materials & Solar Cells,
2011, 95, 2136– 2140.
. C. Qin-Miao et al., Doctor-bladed Cu2ZnSnS4 light absorption layer for low-cost
solar cell application. Chin. Phys. B, 2012, 21, 038401-1 - 038401-6.
. A. Nagaoka et al., Preparation of Cu2ZnSnS4 single crystals from Sn solutions.
Journal of Crystal Growth, 2012, 341, 38–41
. P.M.P. Salome et al., The influence of hydrogen in the incorporation of Zn during
the growth of Cu2ZnSnS4 thin films. Solar Energy Materials & Solar Cells, 2011,
95, 3482-3489.
. X. Zhang et al., Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as
potential solar cell material. Applied Physics A Material Science &Processing, 2009,
94, 381-386.
. Y. B. Kishore Kumar et al., Effect of starting - solution pH on the growth of
Cu2ZnSnS4 thin films deposited by spray pyrolysis. Phys. Statue Solidi A, 2009,
206, 1525-1530.

. V.G. Rajeshmon et al., Role of precursor solution in controlling the opto-
electronic properties of spray pyrolysed Cu2ZnSnS4 thin films. Solar Energy, 2011,
85, 249–255
. H. katagiri et al., Characterization of Cu2ZnSnS4 thin films prepared by vapor
phase sulfurization. Jpn. J. Appl. Phys. 2001, 40, 500-504.
. H. Araki et al., Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked
metallic layers, Thin Solid Films, 2008, 517, 1457–1460
. K. Tanaka et al., Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel
deposited precursors. Solar Energy Materials & Solar Cells, 2007, 91, 1199–1201.
. T.P. Wada et al., Ternary and multinary Cu- chalcogenide photovoltaic materials
from CuInSe2 to Cu2ZnSnS4 and other coumpounds. Prog. Res. Appl., 2012, 10,
1002-1007.
. V. G. Rajeshmon et al., Role of Precursor solution in controlling the opto-electronic
properties of spray pyrolysed Cu2ZnSnS4 thin films. Solar Energy, 2011, 85, 249-
255.
. D. Dumcenco et al., The vibrational properties study of kesterite Cu2ZnSnS4
single crystals by using polarization dependent Raman Spectroscopy. Optical
materials, 2012, 09, 031.
. K. Ramasamy et al., The chemical vapor deposition of Cu2ZnSnS4 thin films.
Chem. Sci., 2011, 2, 1170 - 1172.
. N. Nakayama, K. Ito, Sprayed films of stannite Cu2ZnSnS4. Applied surface
science, 1996, 92, 171-175.
. T. Kobayashi et al., Investigation of Cu2ZnSnS4 - based thin film solar cells using
Abundant Materials, Jpn. J. Appl. Phys, 2005, 44, 783-787.
. A. Weber, R. Mainz, and H. W. Schock, On the Sn loss from thin films of the
material system Cu–Zn–Sn–S in high vacuum, Journal of Applied Physics,
2010, 107, 013516 -1- 013516-6.
. D.B. Mitzi et al., The path towards a high-performance solution-processed
kesterite solar cell. Solar Energy Materials & Solar Cells, 2011,95, 1421–1436.
. K.Ramasamy et al., Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential
material for solar cells. Chem. Commun., 2012, 48, 5703–5714.
. M. Y. Yeh et al., Influence of Synthesizing temperature on the properties of Cu2ZnSnS4 prepared by Sol-gel spin - coated deposition. J. Sol - Gel Sci Technol., 2009, 52, 65-68.
. Chen et al., Defect physics of the kesterite thin-film solar cell absorber
Cu2ZnSnS4. Appl. Phys. Lett.,2010, 96, 021902 - 1 - 021902-3
Y.B. Kishore Kumar et al., Preparation and characterization of spray-
Deposited Cu2ZnSnS4 thin films. Solar Energy Materials & Solar Cells, 2009,93,
1230–1237
. A. Walsh et al., Crystal structure and defect reactions in the kesterite solar cell
absorber Cu2ZnSnS4 (CZTS): Theoretical insights. AIP Conf. Proc. 2011, 63, 1399
- 1 - 1399 -3.
. S. Siebentritt and S. Schorr, Kesterites - a challenging material for solar cells.
Prog. Photovolt: Res. Appl. 2012, 20, 512–519.
. S.W. Shin et al., Quaternary Cu2ZnSnS4 nanocrystals: Facile and low cost synthesis
by microwave-assisted solution method. Journal of Alloys and Compounds ,
2012,516, 96 – 101.

. J. J. Scragg et al., Chemical insights in to the instability of Cu2ZnSnS4 films
during Annealing. Chem. mater., 2011, 23, 4625-4633.
. T. Maeda et al., First Principles Calculations of Defect Formation in In-Free
Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4, Japanese Journal of
Applied Physics, 2011, 50, 04DP07-1- 04DP07-6.
. Wangt et al., Structural and elemental characterization of highly efficiency
Cu2ZnSnS4 solar cells. Apllied Physics Letters, 2011, 98, 051912-1- 051912-3.
. E. Kask et al., Deep defects in Cu2ZnSnS4 monograin solar cells. Energy Procedia,
2011, 10, 261 – 265.
. A. Nagoya et al., Defect formation and phase stability of Cu2ZnSnS4 photovoltaic
Material. Physical Review B, 2010, 81, 113202.
. M. Grossberg et al., photoluminescence and Raman study of Cu2 ZnSn(SexS1-x)4
monograins for photovoltaic applications. Thin Solid Films, 2011, 519, 7403-7406.
. Chen et al., Intrinsic point defects and complexes in the quaternary kesterite
semiconductor Cu2ZnSnS4, Physical REVIEW B, 2010, 81, 245204-1-245204-10
. Just et al., Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by
x- ray absorption near edge structure analysis, Appl. Phys. Lett., 2011, 99, 262105
- 1 - 262105 -3
. A Nagoya et al., First-principles study of Cu2ZnSnS4 and the related band
offsets for photovoltaic applications. J. Phys.: Condens. Matter, 2011, 23, 404203
- 1 - 404203 - 6

. M. Jeon et al. , Formation and characterization of single-step electrodeposited
Cu2ZnSnS4 thin films: Effect of complexing agent volume, Energy Procedia,
2011, 10, 255 – 260.
. J. B. Mooney and S. B. Radding, Spray pyrolysis processing. Ann. Rev. Mater.
Sci., 1982, 12, 81-101.
. S. Witanachchi et al.: Laser-assisted spray pyrolysis process for the growth of TiO2
and Fe2O3 nanoparticle coatings, J. Mater. Res., 2007, 3.
. http://inventors.about.com/od/pstartinventions/a/Photoluminescen.htm.
. http://www.nrel.gov/pv/measurements/photoluminescence_spectroscopy.html
. http://en.wikipedia.org/wiki/Hall_effect

. E.L. Decker et al., Physics of contact angle measurement. Colloids and Surfaces
A: Physicochem. Eng. Aspects, 1999,156, 177–189.
. T.S. Meiron et al., Contact angle measurement on rough surfaces. Journal of
Colloid and Interface Science, 2004,274, 637–644.
. http://www.cpi-plasma.com/pdf/angle_uk.pdf
. M. H. Frey and D.A. Payne, Grain – size effect on structure and phase
transformations for barium titanate. Physical Review B, 1996-1, 54, 3158-3168.
. J-L. Zhao et al., Highly (002)-oriented ZnO film grown by ultrasonic spray
pyrolysis on ZnO-seeded Si (100) substrate. J. Mater. Res., 2006, 21, 2185-2190.
. Y. Liu et al., Optical and photoluminescent properties of Al-doped zinc oxide thin
films by pulsed laser deposition. Journal of Alloys and Compounds, 2009, 485,
529–531.

. K.E. Lee et al., Structural, electrical and optical properties of sol–gel AZO thin
films Current Applied Physics, 2009, 9, 683–687.
. H.-C. Lee, O.O. Park, Electron scattering mechanisms in indium-tin-oxide thin
films:grain boundary and ionized impurity scattering. Vacuum, 2004,75, 275–282.
. H.-C. Lee, Electron scattering mechanisms in indium–tin-oxide thin films
prepared at the various process conditions. Applied Surface Science, 2006, 252,
3428–3435.
. W. Xie et al. , Synthesis of highly dispersed Cu2ZnSnS4 nanoparticles by
solvothermal method for photovoltaic application. Physica E, 2012, 45, 16–20.
. P. K. Sarswat, M.L.Free, A study of energy band gap versus temperature for
Cu2ZnSnS4 thin films. Physica B, 2012, 407, 108-11.
. H. Park et al., Sol–gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber
layer without sulfurization. J Sol-Gel Sci Technol, 2012, DOI 10.1007/s10971-012-
2703-0.
. A. Wangperawong et al., Aqueous bath process for deposition of Cu2ZnSnS4
photovoltaic absorbers. Thin Solid Films, 2011,519, 2488–2492.
. M. Cao, Y. Shen, A mild solvothermal route to kesterite quaternary Cu2ZnSnS4
nanoparticles. Journal of Crystal Growth, 2011,318, 1117–1120.
. Y.-L. Zhou et al., Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a
facile solvothermal method. Materials Letters, 2011,65, 1535–1537.
. Y. Wang and H. Gong, Low temperature Synthesised quaternary chalcobenide
Cu2ZnSnS4 from Nano-Crystalline Binary Sulfides. J. of Electrochemical Society,
2011, 158, H800-H803.
. J. Zhou et al., Preparation and characterization of Cu2ZnSnS4 microparticles via a
facile solution route. Materials Letters, 2012,81, 248–250.
. A. Singh et al.,Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and
Their Perpendicular Assembly. J. Am. Chem. Soc, 2011, 134, 2910 - 2913.
. L. Sun et al., Structure, composition and optical properties of Cu2ZnSnS4 thin films
deposited by Pulsed Laser Deposition method. Solar Energy Materials & Solar
Cells, 2011, 95, 2907–2913.
. P.K.Sarswat, M.L.Free, Demonstration of sol - gel synthesized bifacial CZTS photoelectrochemical cell.
. Grossberg et al., The role of structural properties on deep defect statements in
Cu2ZnSnS4 studied by photoluminescence spectroscopy. Appl. Phys. Lett. 2012,
101, 102012-1 - 102102-4.
. Jiang et al., Cu2ZnSnS4 polycrystalline thin films with large densely packed grains
prepared by sol-gel method. J. of Photonics for Energy, 2011, 1, 019501-1- 019501-1- 6.
. P.K.Sarswat, M.L.Free, Demonstration of a sol-gel synthesized bifacial CZTS
photoelectrochemical cell. Phys. Status Solidi A, 2011, 208, 2861-2864.
. K. Tanaka et al., Chemical Composition dependence of morphological and optical
properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and
Cu2ZnSnS4 thin film solar cell efficiency.
. B.-A. Schubert et al., Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog.
Photovolt: Res. Appl., 2011, 19, 93–96.

. C. Shi et al., Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation
from single quaternary compound source. Materials Letters, 2012, 73, 89-91.
. http://www.bcnenergychallenges.com/wp-content/uploads/papers/Alejandro_Perez_PAPER.pdf

無法下載圖示 全文公開日期 2018/02/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE