簡易檢索 / 詳目顯示

研究生: 簡鴻吉
Hung-chi Chien
論文名稱: 多通道MDA在無線網狀區域網路下的研究
Study on Multi-channel MDA for Wireless Mesh LAN
指導教授: 黎碧煌
Bih-hwang Lee
口試委員: 吳傳嘉
Chwan-chia Wu
賴源正
Yuan-cheng Lai
余聲旺
Sheng-wang Yu
陳明輝
Ming-huei Chen
馮輝文
Huei-wen Ferng
鍾添曜
Tein-yaw Chung
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 76
中文關鍵詞: 多通道無線網狀區域網路
外文關鍵詞: IEEE802.11s
相關次數: 點閱:219下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IEEE802.11s 草案中提出一種新的媒體存取控制(MAC)存取功能-MDA (mesh deterministic access),主要用於單通道的無線網狀區域網路。但在單通道環境中容易發生控制封包與資料封包之碰撞和網路容量不足的問題。為了能提供無線網狀區域網路更高的網路容量和效能,本論文希望將MDA機制的運作拓展至多通道網路架構。而為了減少硬體設計時的硬體資源需求和設計複雜度,我們只允許無線網狀區域網路內的網狀節點裝備單一的傳收器來支援多通道環境。首先將網狀DTIM (delivery traffic indication message)間隔分割成競爭區間和資料傳輸區間,完全避免控制封包和資料封包發生碰撞。並新定義鄰近網狀節點狀態表格(NMST)使得網狀節點能支援多通道環境。競爭建立MDAOP (MDA opportunity)的機制採用四向交握模式,以期有效降低隱藏節點的問題。在選取MDAOP機制方面則新設計CLFRF (channel load first random fit)和MCBF (multi-channel best fit)兩種機制來幫助網狀節點選取MDAOP時更有效率。本論文所提出的多通道 MDA (MMDA)演算法可以充分使用多通道環境以達到提升無線網狀區域網路的整體效能。模擬結果清楚呈現不論網路處於飽和或非飽和模式,MMDA演算法在產能、平均等待時間和封包丟棄率都比EDCA (enhanced distributed channel access)表現為佳。
    不過當無線網狀區域網路處於高負載的狀態下,因MMDA演算法採用固定配制競爭區間的機制,故會遭遇網路資源浪費的問題。為了解決此問題,本論文另提出動態調整競爭區間(DACP)的機制。此外尚採用ABP (adaptive backoff process)來改良MMDA演算法的公平性。在模擬結果方面,我們所提出的方法在無線網狀區域網路重載時效能表現較MMDA演算法和EDCA更好。


    IEEE802.11s draft proposes a new medium access control (MAC) function-mesh deterministic access (MDA), which is mainly used for single-channel wireless mesh local area network (LAN). In single-channel environment, collisions between control packets and data packets may occur very often. In order to provide higher network capacity and performance for wireless mesh LAN, this thesis develops an algorithm for MDA to work well on multi-channel wireless mesh LAN. To reduce the hardware requirements in design, a mesh point (MP) only equips single transceiver to support multi-channel environment. To completely avoid the collision between control packets and data packets, the mesh delivery traffic indication message (DTIM) interval is first divided into contention period (CP) and data transmission period (DTP). We newly define a neighbor MP status table (NMST) for MPs to support multi-channel environment. The mechanism of reserving MDA opportunity (MDAOP) adopts the four-way-handshaking mode to reduce hidden node problem; we propose channel load first random fit (CLFRF) and multi-channel best fit (MCBF) mechanisms to select MDAOP. This thesis proposes a multi-channel MDA (MMDA) algorithm to improve the overall performance of wireless mesh LAN in multi-channel environment. The theoretical analysis gives the upper limit of the throughput for MMDA algorithm. The simulation experiments clearly show the results in multi-channel wireless mesh LAN environment that MMDA algorithm performs better than enhanced distributed channel access (EDCA) in throughput, average waiting time, and packet drop ratio both in the saturated and non-saturated mode.
    But MMDA algorithm suffers the resource waste problem by used fixed CP ratio when wireless mesh LAN is at heavy loading situation, so this thesis also proposes a dynamic adjustable contention period (DACP) mechanism to solve this problem. In addition, we also adopt a adaptive backoff process (ABP) to improve the fairness of MMDA algorithm. The simulation experiments show the results in heavy loading multi-channel wireless mesh LAN environment that the proposed scheme performs better than MMDA algorithm and EDCA in throughput, average waiting time, and packet drop ratio.

    Abstract in Chinese…………………………………………..…………iii Abstract in English………………………………………………………iv Acknowledgements……………………………………………………………vi Table of Contents…………………………………………………………vii List of Symbols……………………………………………………………ix List of Figures……………………………………………………………xii List of Tables………………………………………………………………xiv Chapter 1 Introduction……………………………………………………1 1.1 Motivation……………………………………………………………1 1.2 Related Works………………………………………………………3 1.3 Organization of Thesis………………………………………………5 Chapter 2 IEEE802.11s Overview……………………………………………6 Chapter 3 Multi-Channel MDA Algorithm ……………………………………9 3.1 Mesh DTIM Interval Architecture and Neighbor MP Status Table……9 3.2 Four-way-handshaking Mechanism for MMDA Algorithm…………………11 3.3 MDAOP Selection Mechanism for MMDA Algorithm………………………16 3.3.1 Channel Load First Random Fit Mechanism……………………………17 3.3.2 Multi-Channel Best-Fit Mechanism……………………………………18 3.4 MDAOP Teardown and Relocation Mechanisms for MMDA Algorithm……18 3.5 MMDA Algorithm Throughput Analysis………………………………………21 3.6 Simulation and Results Analysis……………………………………………24 3.6.1 Two-hop Scenario……………………………………………………………25 3.6.2 Multi-hop Scenario…………………………………………………………26 Chapter 4 Dynamic Adjust Contention Period Mechanism and Adaptive Backoff Process………………………………………………………………………………33 4.1. Dynamic Adjustable Contention Period Mechanism……………………34 4.2. Adaptive Backoff Process……………………………………………………41 4.3. Simulation and Results Analysis………………………………………42 Chapter 5 Conclusions……………………………………………………………51 References…………………………………………………………………………53 Appendix A A Abbreviations and Acronyms…………………………………59

    [1] IEEE. Part 11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 10: Mesh Networking, IEEE Std. 802.11s,” Draft 2.02, Sept. 2008.
    [2] G. R. Hiertz, S. Max, Y. Zang, T. Junge and D. Denteneer, “IEEE 802.11s MAC Fundamentals,” in Proceeding of Mobile Ad-hoc and Sensor Systems, pp.18, 2007.
    [3] M. A. Marsan and D. Roffinella, “Multichannel Local Area Network Protocols,” IEEE Journal on Selected Areas in Communications, vol. 1, issue 5, pp.885-897, Nov. 1983.
    [4] A. Baiocchi, A. Todini, and A. Valletta, “Why a multichannel protocol can boost IEEE 802.11 performance,” in Proceeding of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, pp. 143-148, Oct. 2004.
    [5] K. Yang, J. F. Ma and Z. H. Miao, “Hybrid Routing Protocol for Wireless Mesh Network,” in Proceeding of International Conference on Computational Intelligence and Security(CIS '09), pp.547-551,2009.
    [6] A. O. Lim, X. Wang, Y. Kado and B. Zhan, “A Hybrid Centralized Routing Protocol for 802.11s WMNs,” Mobile Networks and Applications Journal, vol. 13, no. 1-2, pp.117-131, April 2008.
    [7] M. Bahr, “Proposed routing for IEEE 802.11s WLAN mesh networks,” in Proceeding of 2nd annual international workshop on Wireless internet (WICON '06) ,Vol.220, Aug. 2006.
    [8] W.-J. Yoon, S.-H. Chung, S.-J. Lee and Y.-S. Lee, “An efficient cooperation of on-demand and proactive modes in Hybrid Wireless Mesh Protocol,” in Proceeding of 33rd IEEE Conference on Local Computer Networks (LCN 2008), pp.52-57, 2008.
    [9] A. Ksentini and O. Abassi, “A comparison of VoIP performance over three routing protocols for IEEE 802.11s-based wireless mesh networks (WLAN Mesh),” in Proceeding of 6th ACM International Symposium on Mobility Management and Wireless Access (MOBIWAC’08), pp147-150, Oct. 2008.
    [10] Q. Shen and X. Fang, “A Multi-metric AODV Routing in IEEE 802.11s,” in Proceeding of IEEE International Conference on Communication Technology (ICCT ‘06), pp.1-4, 2006.
    [11] J. Li, J. Yun, J. Yun, K. Cho and K. Han, “Path management scheme to support mobile station in wireless mesh networks for U-healthcare applications,” in Proceeding of Wireless Telecommunications Symposium (WTS 2009), pp.1-4, 2009.
    [12] C. Pepin, U. C. Kozat and S. A. Ramprashad, “A Joint Traffic Shaping and Routing Approach to Improve the Performance of 802.11 Mesh Networks,” in Proceeding of 4th IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp.1-10, April 2006.
    [13] A. Neishaboori and G. Kesidis, “SINR-sensitive routing in wireless 802.11 mesh networks,” in Proceeding of 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS 2008), pp.623-628, Sept. 29-Oct. 2 2008.
    [14] S.-H. Lee, Y.-B. Ko, Y.-G. Hong and H.-J. Kim, “A new MIMC routing protocol compatible with IEEE 802.11s based WLAN mesh networks,” in Proceeding of IEEE International Conference on Information Networking (ICOIN2011), pp.126-131, Jan. 2011.
    [15] G. Isabwe and K. S. Kim, “A novel approach to WLAN mesh interworking with multiple mesh portals,” in Proceeding of 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS 2008), pp.641-646, Sept. 29-Oct. 2 2008.
    [16] U. Ashraf, S. Abdellatif and G. Juanole, “Gateway Selection in Backbone Wireless Mesh Networks,” in Proceeding of Wireless Communications and Networking Conference (WCNC), pp.1-9, 2009.
    [17] IEEE std. 802.11e2005,“Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements,”Nov. 2005.
    [18] H. Aoki, S. Takeda, K. Yagyu and A. Yamada, “IEEE 802.11s Wireless LAN Mesh Network Technology,” NTT DoCoMo Technical Journal, vol.8, no.2, pp.1321, 2006.
    [19] G. R. Hiertz, S. Max, Rui Zhao, D. Denteneer and L. Berlemann, “Principles of IEEE 802.11s,” in Proceeding of 16th International Conference on Computer Communications and Networks (ICCCN 2007), pp.10021007, Aug. 2007.
    [20] J. Camp and E. Knightly, “ The IEEE 802.11s Extended Service Set Mesh Networking Standard,” IEEE Communications Magazine, vol. 46, issue.8, pp.120126, Aug. 2008.
    [21] J.-H. Chiang and T. Chiueh, “Accurate clock synchronization for IEEE 802.11-based multi-hop wireless networks,” in Proceeding of 17th IEEE International Conference on Network Protocols (ICNP 2009), pp.11-20, Oct. 2009.
    [22] M. J. Lee, J. Zheng,Y.-B. Ko and D. M. Shrestha, “ Emerging standards for wireless mesh technology,” IEEE Wireless Communications, vol.13, issue 2, pp.56-63, April 2006.
    [23] N. S. Nandiraju, D. S. Nandiraju, D. Cavalcanti and D. P. Agrawal, “A novel queue management mechanism for improving performance of multihop flows in IEEE 802.11s based mesh networks,” in Proceeding of Performance, Computing, and Communications Conference (IPCCC 2006), pp.162-168, April 2006.
    [24] A. Ranjitkar and Y.-B. Ko, “Performance Enhancement of IEEE 802.11s Mesh Networks using Aggressive Block Ack Scheme,” in Proceeding of International conference on Information Networking (ICOIN 2008), pp.1-5, Jan. 2008.
    [25] V. Vishnevsky, A. Lyakhov, A. Safonov and S. Shpilev, “Beaconing for MDA Support in IEEE 802.11s Mesh Networks,” in Proceeding of IEEE 18th Symposium on Personal , Indoor and Mobile Radio Communications (PIMRC 2007), pp.1-5, Sept. 2007.
    [26] Y. Chen and S. Emeott, “Impact of scheduled mesh access on the capacity of wireless mesh links,” in Proceeding of Radio and Wireless Symposium (RWS ‘09), pp.107-110, Jan. 2009.
    [27] Md. S. Islam, M. M. Alam, C. S. Hong and J. S. Sung, “Enhanced Channel Access Mechanism for IEEE 802.11s Mesh Deterministic Access,” in Proceeding of Wireless Communications and Networking Conference (WCNC), pp.16, April 2010.
    [28] J. A. Fernandez, D. D. Stancil and F. Bai, “Dynamic channel equalization for IEEE 802.11p waveforms in the vehicle-to-vehicle channel,” in Proceeding of 48th Annual Allerton Conference on Communication, Control, and Computing, pp.542-551, 2010.
    [29] W. Alasmary and W. Zhuang, “The Mobility Impact in IEEE 802.11p Infrastructureless Vehicular Networks,” in Proceeding of Vehicular Technology Conference Fall (VTC 2010-Fall), pp.1-5, 2010.
    [30] F. Kaabi, P. Cataldi, F. Filali and C. Bonnet, “Performance Analysis of IEEE 802.11p Control Channel,” in Proceeding of Sixth International Conference on Mobile Ad-hoc and Sensor Networks, pp.211-214, 2010.
    [31] I.-C. Chu, P.-Y. Chen and W.-T. Chen, “An IEEE 802.11p Based Distributed Channel Assignment Scheme Considering Emergency Message Dissemination,” in Proceeding of IEEE 75th conference on Vehicular Technology Conference (VTC Spring 2012), pp.1-5, 2012.
    [32] D. J. Shyy, “Military Usage Scenario and IEEE 802.11s Mesh Networking Standard,” in Proceeding of IEEE Military Communications Conference (MILCOM 2006), pp.1-7 Oct. 2006.
    [33] S. M. Faccin, C. Wijting, J. Kenckt and A. Damle, “Mesh WLAN networks: concept and system design,” in Proceeding of IEEE International Conference on Wireless Communications, vol. 13, no.2, pp.1017, April 2006.
    [34] Y.-D. Lin, S.-L. Tsao, S.-L. Chang, S.-Y. Cheng and C.-Y. Ku, “Design issues and experimental studies of wireless LAN Mesh,” in Proceeding of IEEE International Conference on Wireless Communications, pp.3240, April 2010.
    [35] G. R. Hiertz, S. Max, T. Junge, D. Denteneert and L. Berlemann, “IEEE 802.11s - Mesh Deterministic Access,” in Proceeding of 14th European Wireless Conference (EW 2008), pp.1-8, June 2008.
    [36] H. Jasani and N. Alaraje, “Evaluating the performance of IEEE 802.11 network using RTS/CTS mechanism,” in Proceeding of IEEE International conference on Electro/Information Technology, 2007, pp.616-621,2007.
    [37] IEEE 802.11 Working Group, “Wireless LAN Medium Access Contro1(MAC) and Physical Layer(PHY) specifications,” 1997.
    [38] C. Cicconetti, L. Lenzini and E. Mingozzi, “Scheduling and Dynamic Relocation for IEEE 802.11s Mesh Deterministic Access,” in Proceeding of 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '08), pp.19-27, 2008.
    [39] B. J. Kwak, N. O. Song and L. E. Miller, “Performance Analysis of Exponential Backoff,” IEEE/ACM Transactions on Networking, vol.13, no.2, pp.343-355, April 2005.
    [40] J. Hoblos, “Fairness enhancement in IEEE 802.11s multi-hop wireless mesh networks,” in Proceeding of IEEE 13th International Conference on Communication Technology (ICCT), pp.647651, 2011.

    QR CODE