簡易檢索 / 詳目顯示

研究生: 魏偉翰
Wei-Han Wei
論文名稱: Mn-MIL-100衍生錳基碳材料於太陽光誘導光熱協同效應移除甲醛氣體之應用
Mn-MIL-100 derived Mn-based carbon materials for the synergistic photothermal effect of sunlight-induced removing gaseous formaldehyde
指導教授: 胡哲嘉
Che-Chia Hu
口試委員: 陳志吉
Chih-Chi Chen
顧洋
Young Ku
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 錳氧化物MOF衍生碳材甲醛光熱催化
外文關鍵詞: Manganese oxides, MOF derived carbon, Formaldehyde, Photothermal catalytic purification
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,基於觸媒材料成本高昂和熱催化須額外耗能以及光催化的光頻譜利用效率低等缺點,許多研究致力於尋找替代更符合經濟效益且能更實際應用的催化方法,如能充分利用太陽能可再生能源進行光熱催化,而不是單靠施加熱能來克服催化氧化過程中的活化能,達到將汙染物降解以免於二次污染。所以我們將催化反應與光熱材料結合,提供了一種利用太陽能改善熱催化與光催化的研究。首先使用毒性較低的溶劑以綠色合成得到Mn-MIL-100接著在氮氣氣氛下通過高溫碳化得到MnO@C-800,並通過水熱法進一步改質碳化後樣品,通過吸附與光熱催化移除室內有毒氣體甲醛。 結果表明,錳氧化物奈米碳材料在太陽模擬器的照射下會自然升溫到~60oC,並能在30分鐘內降解~100%(4ppm)的甲醛。我們所合成的錳氧化物奈米碳材料表現優異的甲醛移除活性,可歸因於MnO2與奈米石墨碳之間的協同光熱效應,增強了全太陽光光譜的利用效率,尤其是在近紅外區域有優異的吸收響應。另外在太陽光模擬器的照射下錳氧化物奈米碳材料能夠生成超氧自由基且有效的貢獻在甲醛的催化反應,並且我們透過單純熱催化與光加熱催化的實驗去進行光熱催化模式與機制探討。該結果展示了一種有效利用取之不盡的太陽能而非外加熱能來驅動催化反應的理想方法,是能降低實際應用上的成本需求並同時提高傳統光催化劑催化效率的有前景之策略。


    Recently, the pollutant removal reaction was known for the high cost of catalyst materials, extra energy consumption for thermal catalysis, and low efficiency of light absorption for photocatalysis. We need to find a solution to achieve full utilization of solar renewable energy by thermal energy to overcome the activation energy in the catalytic oxidation process and avoid secondary pollution. In this study, we combined catalytic reactions with photothermal materials to improve thermal catalysis and photocatalysis by solar energy. In this current study, Mn-MIL-100 derived Mn-based carbon materials were found to be an effective material for the removal of gaseous formaldehyde (HCHO). The results show that the Mn-based carbon materials reached ~60oC under the irradiation of a solar simulator and removed ~100% (4ppm) formaldehyde within 30 minutes. The as-synthesized sample exhibits excellent formaldehyde removal efficiency, which can be attributed to the synergistic photothermal effect between MnO2 and graphitic carbon and enhanced the utilization of sunlight, especially in the near-infrared region. In addition, Mn-based carbon materials can generate superoxide radicals and effectively enhance formaldehyde removal efficiency under the irradiation of a solar simulator. We also conducted experiments to prove the mechanism of photothermal reaction mode. This result provides a facile, simple, and fast approach to efficiently utilize the inexhaustible solar energy rather than extra heating energy to drive catalytic reactions. Thus, this study shows a way to reduce the cost requirements for practical applications as well as improve the catalytic efficiency of traditional thermal catalysts. So, it’s a promising strategy to be eco-friendly and economical for indoor HCHO removal.

    中文摘要 I 英文摘要 II 目錄 III 誌謝 V 圖片索引 VI 表格索引 IX 第一章、緒論 1 1.1 研究背景 1 1.2 研究目的 7 1.3 研究流程 8 第二章、文獻回顧 9 2.1 甲醛特性 9 2.2 甲醛移除方法 11 2.3 市面上甲醛清淨技術概述 14 2.4 觸媒特性 16 2.4.1 金屬有機框架衍生碳材料 16 2.4.2 過渡金屬氧化物 18 2.5 光熱材料機制與應用概述 22 2.5.1 光熱效應機制模式 22 2.5.2 光熱材料應用於VOCs移除 24 第三章、實驗部分 28 3.1 實驗藥品與器材 28 3.2 觸媒製備 29 3.2.1 Mn-MIL-100 合成 29 3.2.2 Mn-MIL-100 衍生錳基金屬碳材合成 30 3.2.3 水熱法改植MOF衍生錳基金屬碳材 30 3.3 分析儀器與原理 30 3.3.1 分析儀器 30 3.3.2 分析儀器基本原理 31 3.4 甲醛移除活性實驗 34 第四章、結果與討論 36 4.1 錳基碳材料的結構特性 36 4.2 錳基碳材料的形貌特性 42 4.3 錳基碳材料的光學特性 48 4.4 錳基碳材料的甲醛去除活性 49 4.5 光熱催化甲醛移除機制 53 第五章、結論 59 參考文獻 60 附錄一 69 附錄二 74 圖片索引 圖 1-1、金屬/過渡金屬降解甲醛氣體相關研究論文於Web of Science上的統計。 4 圖 1-2、光熱催化機制模式與相關應用領域之示意圖。 6 圖 2-1、甲醛分子結構圖(紅色:氧; 黑色:碳; 白色:氫)。 10 圖 2-2、L-H機制(A)、E-R機制(B)及MvK機制(C)[23]。 12 圖 2-3、二氧化鈦於紫外光照射下光催化氧化之示意圖[24]。 13 圖 2-4、電漿催化法於連續流動式系統之示意圖[25]。 14 圖 2-5、製備有序介孔碳材料的兩種典型方法之比較:介孔二氧化矽硬模板奈米模鑄法和嵌段共聚物軟模板直接合成法[29]。 17 圖 2-6、使用MOF和POF作為模板或前軀物來製備多孔碳材或奈米功能性材料之結構與應用示意圖[34]。 18 圖 2-7、(左)三種具有不同方形隧道尺寸的錳氧化物的晶體結構圖。(右)1x1、2x2和3x3隧道式錳氧化物催化劑在HCHO完全氧化中的隧道效應[36]。反應條件:催化劑=0.2 g,HCHO=400 ppm,O2=10.0 vol%與N2混合,氣體流速=100 mL/min。 20 圖 2-8、在不同的合成溫度下,水鈉錳礦降解甲醛生成二氧化碳的活性比較圖[38]。 21 圖 2-9、α、β、γ和δ-MnO2之HCHO轉化效率圖。反應條件:170 ppm HCHO,20% O2與N2混合,GHSV=100000 mL/(gcat-h) [40]。 22 圖 2-10、四大光熱催化之協同模式示意圖[41]。 24 圖 2-11、在OL-1 (Octahedral Layered Birnessite Nanoflowers)上通過光活化增强的太陽光驅動熱催化的示意圖[21]。 26 圖 2-12、(左)不同催化劑在氙光輻照下去除HCHO的催化效能; (中) 氙光輻照下催化劑表面溫度的變化; (右)不同波長輻照下8:1 G-Mn-CN催化劑去除HCHO的催化效能[43]。 27 圖 4-1、Mn-MIL-100、MnO@C-800、KMn-0.1M; 0.5M; 1.5M之 (a), (c), (e) XRD 圖譜和 (b), (d), (f) FTIR 圖譜。 38 圖 4-2、(a) Mn-MIL-100、MnO@C-800、KMn-0.1; 0.5; 1.5M之拉曼光譜,(b) KMn0.5M和KMn-1.5M特徵峰範圍為350~850 cm-1的放大圖,(c) MnO@C -800和KMn-0.1M特徵峰範圍為1000~1800 cm-1的放大圖。 39 圖 4-3、KMn-0.5M的 (a) C 1s、(b) O 1s、(C) Mn 2p的XPS圖和(d) KMn-0.1; 0.5; 1.5M的Mn 2p的XPS圖。 41 圖 4-4、(a), (b) Mn-MIL-100和 (c), (d) MnO@C-800 之SEM影像圖。 43 圖 4-5、(a), (d) KMn-0.1M、 (b), (e) KMn-0.5M、(c), (f) KMn-1.5M之SEM影像圖; (g) KMn-0.1M、(h) KMn-0.5M和 (i) KMn-1.5M之TEM影像圖。 44 圖4-6、(a) MnO@C-800的XRD圖和(b)-(e) MnO@C-800的HR-TEM影像圖,(d)圖中的插圖為 MnO@C-800的SAED衍射圖。 45 圖 4-7、(a) KMn-0.5M的XRD圖和(b)-(e) KMn-0.5M的HR-TEM影像圖,(d)圖中的插圖為 KMn-0.5M的SAED衍射圖。 46 圖 4-8、Mn-MIL-100、MnO@C -800、KMn-0.1M; 0.5M; 1.5M 之 (a)氮氣吸脫附等溫曲線圖和(b) BJH孔徑分佈圖。 47 圖 4-9、Mn-MIL-100、MnO@C -800、KMn-0.1M; 0.5M; 1.5M之(a) UV-VIS-NIR圖; (b)市售二氧化錳與市售石墨碳樣品的UV-VIS-NIR 圖。 49 圖 4-10、(a), (c), (e) 室溫吸附(W/O light 26oC)(實線)與使用太陽模擬器在光照下(NTC)(虛線)移除HCHO之相對濃度圖以及(b), (d), (f) HCHO移除效能圖。光源和催化劑之間的距離為30 cm。注: HCHO初始濃度為4.0 ppm,催化劑用量為0.2 g,所用樣品為Mn-MIL-100, MnO@C -800,KMn-0.1M; 0.5M; 1.5M。 51 圖 4-11、KMn-0.5M在室溫吸附(W/O light 26oC)與太陽光模擬器光照下 (With light NTC~60oC)移除HCHO前後的(a) KMn-0.5M太陽光模擬器光照下移除HCHO的重複性試驗、(b) XRD圖譜; (c) FTIR圖譜。 注: HCHO的初始濃度為4.0 ppm,催化劑用量為0.2 g,光源為太陽模擬器,光源與催化劑之間的距離為30 cm,每次重複性試驗前,催化劑在100°C下置放2 h,以去除雜質。 53 圖 4-12、KMn-0.5M在不同條件下的催化活性: (a)室溫吸附和太陽光模擬器光照下、(b)光照並控制材料表面在特定溫度和太陽光模擬器光照下、(c)室溫吸附、光照並控制材料表面在特定溫度和太陽光模擬器光照之三種條件下的HCHO移除效能圖、(d)太陽模擬器光照下KMn-0.1M; 0.5M; 1.5M的表面溫度變化和移除HCHO之相對濃度圖。 55 圖 4-13、DMPO電子自旋捕捉ESR圖譜於室溫下和照光後(a) Mn-MIL-100、(b) MnO@C-800、(c) KMn-0.5M樣品 (黑線:室溫下; 紅線: 照光後); (d) KMn-0.5M的原位變溫EPR圖譜 (26oC~60oC),(d)圖中的插圖為60oC下訊號的放大圖。注: 白光波長: 200~2000 nm,白光強度: 100 W。 57 圖 4-14、光驅動熱催化協同效應移除HCHO之反應機制途徑示意圖。 58 圖 S1、(a) MnO@C-600; 1000、(b) KMn600-0.1M; KMn1000-0.1M、(c) KMn-0.1M-9hr; 15hr樣品XRD圖譜。 69 圖 S2、MnO@C-800樣品之 (a) SEM影像圖、(b) EDS和不同元素分布圖:(c) C,(d) O,(e) Mn。 69 圖 S3、(a) KMn-0.5M樣品之 (a) SEM影像圖、(b)EDS和元素分布圖:(c) C、(d) O、(e) Mn、(f) Na、(g) K。 70 圖 S4、(a)-(c)不同放大倍率下之KMn-0.5M樣品的側面SEM影像。 70 圖 S5、Mn-MIL-100和MnO@C-800樣品之 (a) C 1s、(b) O 1s和 (c) Mn 2p的XPS圖譜。 71 圖 S6、KMn-0.5M樣品於甲醛移除實驗前後之 (a) C 1s、(b) O 1s 和 (c) Mn 2p的XPS圖譜。 71 圖 S7、(a), (c), (e) 室溫吸附(W/O light 26oC)(實線)與使用太陽光模擬器在光照下(NTC)(虛線)移除HCHO之相對濃度圖,以及(b), (d), (f) HCHO移除效能圖。光源和催化劑之間的距離為30 cm。注:HCHO初始濃度為4.0 ppm,催化劑用量為0.2 g,所用樣品為Mn-MIL-100,MnO@C-600; 800; 1000,KMn600-0.1M; KMn-0.1M; KMn1000-0.1M和KMn-0.1M-9hr; 15hr。 72 圖 S8、(a)室溫吸附(W/O light 26oC)(實線)與使用太陽光模擬器在光照下(NTC)(虛線)移除HCHO之相對濃度圖,以及(b) HCHO移除效能圖。光源和催化劑之間的距離為30 cm。注:HCHO初始濃度為4.0 ppm,催化劑用量為0.2 g,所用樣品為 Commercial MnO@C; Commercial MnO2@C; KMn-0.5M。 73 圖 S9、不同觸媒材料於光熱催化移除甲醛的實驗條件與效能比較圖表。 73 表格索引 表 1-1、不同觸媒材料於光催化法移除甲醛的實驗驗條件與效能比較表。 2 表 2-1、常見過濾技術優缺點比較表格。 15 表 2-2、不同金屬氧化物應用於降解HCHO之催化效能比較表。 19 表 3-1、實驗藥品。 28 表 3-2、實驗器材。 29 表 3-3、甲醛活性實驗反應條件表。 35 表 4-1、Mn-MIL-100、MnO@C-800、KMn-0.1M; 0.5M; 1.5M之XPS元素分析比例表。 41 表 4-2、Mn-MIL-100、MnO@C-800、KMn-0.1M; 0.5M; 1.5M 之BET 比表面積、孔洞體積和孔徑大小比較表。 48

    [1] A. L. Linsebigler, G. Lu, J. T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95 (1995) 735-758.
    [2] M. Anpo, Y. Shioya, H. Yamashita, E. Giamello, C. Morterra, M. Che, H. H. Patterson, S. Webber, S. Ouellette, Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations, The Journal of Physical Chemistry, 98 (1994) 5744-5750.
    [3] T. Salthammer, S. Mentese, R. Marutzky, Formaldehyde in the indoor environment, Chemical Reviews, 110 (2010) 2536-2572.
    [4] C. Yao, A. Yuan, H. Zhang, B. Li, J. Liu, F. Xi, X. Dong, Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde, Journal of Colloid and Interface Science, 533 (2019) 144-153.
    [5] J. Wang, G. Zhang, P. Zhang, Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation, Applied Catalysis B: Environmental, 239 (2018) 77-85.
    [6] J. Yang, D. Li, Z. Zhang, Q. Li, H. Wang, A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 137 (2000) 197-202.
    [7] Z. Wang, H. Yu, L. Zhang, L. Guo, X. Dong, Photothermal conversion of graphene/layered manganese oxide 2D/2D composites for room-temperature catalytic purification of gaseous formaldehyde, Journal of the Taiwan Institute of Chemical Engineers, 107 (2020) 119-128.
    [8] Y. He, J. Li, J. Sheng, S. Chen, F. Dong, Y. Sun, Crystal-structure dependent reaction pathways in photocatalytic formaldehyde mineralization on BiPO4, Journal of Hazardous Materials, 420 (2021) 126633.
    [9] Z. Zhu, W. G. Hong, C. Y. Chen, R. J. Wu, Novel nanoarchitechtonics olive-like Pd/BiVO4 for the degradation of gaseous formaldehyde under visible light irradiation, Journal of Nanoscience and Nanotechnology, 20 (2020) 2689-2697.
    [10] M. Ran, W. Cui, K. Li, L. Chen, Y. Zhang, F. Dong, Y. Sun, Light‐induced dynamic stability of oxygen vacancies in BiSbO4 for efficient photocatalytic formaldehyde degradation, Energy & Environmental Materials, 5 (2022) 305-312.
    [11] J. Yang, Q. Shi, R. Zhang, M. Xie, X. Jiang, F. Wang, X. Cheng, W. Han, BiVO4 quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation, Carbon, 138 (2018) 118-124.
    [12] S. H. Liu, W. X. Lin, A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde, Journal of Hazardous Materials, 368 (2019) 468-476.
    [13] Y. C. Chang, C. Y. Yan, R. J. Wu, Preparation of Pt@ SnO2 Core‐Shell Nanoparticles for Photocatalytic Degradation of Formaldehyde, Journal of the Chinese Chemical Society, 61 (2014) 345-349.
    [14] M. Chen, H. Wang, X. Chen, F. Wang, X. Qin, C. Zhang, H. He, High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study, Chemical Engineering Journal, 390 (2020) 124481.
    [15] C. Zhang, H. He, K. i. Tanaka, Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature, Catalysis Communications, 6 (2005) 211-214.
    [16] C. Zhang, H. He, K. i. Tanaka, Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature, Applied Catalysis B: Environmental, 65 (2006) 37-43.
    [17] J. Guo, C. Lin, C. Jiang, P. Zhang, Review on noble metal-based catalysts for formaldehyde oxidation at room temperature, Applied Surface Science, 475 (2019) 237-255.
    [18] A. Yusuf, C. Snape, J. He, H. Xu, C. Liu, M. Zhao, G. Z. Chen, B. Tang, C. Wang, J. Wang, Advances on transition metal oxides catalysts for formaldehyde oxidation: a review, Catalysis Reviews, 59 (2017) 189-233.
    [19] W. Ching, M. Leung, D. Y. Leung, Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality, Solar Energy, 77 (2004) 129-135.
    [20] C. Wu, Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation, Applied Surface Science, 319 (2014) 237-243.
    [21] F. Liu, M. Zeng, Y. Li, Y. Yang, M. Mao, X. Zhao, UV–Vis–Infrared light driven thermocatalytic activity of octahedral layered birnessite nanoflowers enhanced by a novel photoactivation, Advanced Functional Materials, 26 (2016) 4518-4526.
    [22] K. Everaert, J. Baeyens, Catalytic combustion of volatile organic compounds, Journal of Hazardous Materials, 109 (2004) 113-139.
    [23] M. Misono, Heterogeneous Catalysis of Mixed Oxides: Perovskite and Heteropoly Catalysts, Newnes 2013.
    [24] J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, R. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review, Atmospheric Environment, 43 (2009) 2229-2246.
    [25] S. Sultana, A. M. Vandenbroucke, C. Leys, N. De Geyter, R. Morent, Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review, Catalysts, 5 (2015) 718-746.
    [26] B. Sakintuna, Y. Yürüm, Templated porous carbons: a review article, Industrial & Engineering Chemistry Research, 44 (2005) 2893-2902.
    [27] H. Yang, D. Zhao, Synthesis of replica mesostructures by the nanocasting strategy, Journal of Materials Chemistry, 15 (2005) 1217-1231.
    [28] L. Chuenchom, R. Kraehnert, B. M. Smarsly, Recent progress in soft-templating of porous carbon materials, Soft Matter, 8 (2012) 10801-10812.
    [29] T. Y. Ma, L. Liu, Z. Y. Yuan, Direct synthesis of ordered mesoporous carbons, Chemical Society Reviews, 42 (2013) 3977-4003.
    [30] H. L. Jiang, Q. Xu, Porous metal–organic frameworks as platforms for functional applications, Chemical Communications, 47 (2011) 3351-3370.
    [31] Y. Chen, D. Wang, X. Deng, Z. Li, Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction, Catalysis Science & Technology, 7 (2017) 4893-4904.
    [32] C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, Light-harvesting metal–organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs, Journal of the American Chemical Society, 133 (2011) 15858-15861.
    [33] S. Zhang, Q. Yang, C. Wang, X. Luo, J. Kim, Z. Wang, Y. Yamauchi, Porous organic frameworks: advanced materials in analytical chemistry, Advanced Science, 5 (2018) 1801116.
    [34] J. K. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications, Energy & Environmental Science, 7 (2014) 2071-2100.
    [35] B. Bai, H. Arandiyan, J. Li, Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts, Applied Catalysis B: Environmental, 142 (2013) 677-683.
    [36] T. Chen, H. Dou, X. Li, X. Tang, J. Li, J. Hao, Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde, Microporous and Mesoporous Materials, 122 (2009) 270-274.
    [37] Y. Sekine, Oxidative decomposition of formaldehyde by metal oxides at room temperature, Atmospheric Environment, 36 (2002) 5543-5547.
    [38] H. Tian, J. He, L. Liu, D. Wang, Z. Hao, C. Ma, Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde, Microporous and Mesoporous Materials, 151 (2012) 397-402.
    [39] J. Wang, P. Zhang, J. Li, C. Jiang, R. Yunus, J. Kim, Room-temperature oxidation of formaldehyde by layered manganese oxide: effect of water, Environmental Science & Technology, 49 (2015) 12372-12379.
    [40] J. Zhang, Y. Li, L. Wang, C. Zhang, H. He, Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures, Catalysis Science & Technology, 5 (2015) 2305-2313.
    [41] R. Ma, J. Sun, D.H. Li, J. J. Wei, Review of synergistic photo-thermo-catalysis: mechanisms, materials and applications, International Journal of Hydrogen Energy, 45 (2020) 30288-30324.
    [42] H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion, Advanced Materials, 29 (2017) 1702590.
    [43] Z. Wang, H. Yu, Y. Xiao, L. Zhang, L. Guo, L. Zhang, X. Dong, Free-standing composite films of multiple 2D nanosheets: Synergetic photothermocatalysis/photocatalysis for efficient removal of formaldehyde under ambient condition, Chemical Engineering Journal, 394 (2020) 125014.
    [44] H. Reinsch, N. Stock, Formation and characterisation of Mn-MIL-100, CrystEngComm, 15 (2013) 544-550.
    [45] H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu, Y. Xie, 1D-3D mixed-dimensional MnO2@ nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response, Chemical Engineering Journal, 417 (2021) 128087.
    [46] M. Shi, H. Zhang, Z. Cao, Y. Yin, S. Yang, MnO/MWCNT Composite Anode Material with Low Temperature Calcination Process for High Performance Lithium-Ion Batteries, Nano, 12 (2017) 1750065.
    [47] R. Wang, Y. Hu, Z. Pan, J. Wang, MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor, RSC Advances, 10 (2020) 34403-34412.
    [48] N. Mironova-Ulmane, A. Kuzmin, V. N. Skvortsova, G. Chikvaidze, I. Sildos, J. Grabis, D. Jankovica, A. P. Dindune, M. M. Maiorov, Synthesis and vibration spectroscopy of nano-sized manganese oxides, (2018).
    [49] M. Qin, H. Zhao, W. Yang, Y. Zhou, F. Li, A facile one-pot synthesis of three-dimensional microflower birnessite (δ-MnO2) and its efficient oxidative degradation of rhodamine B, RSC Advances, 6 (2016) 23905-23912.
    [50] Z. Geng, Y. Wang, J. Liu, G. Li, L. Li, K. Huang, L. Yuan, S. Feng, δ-MnO2–Mn3O4 nanocomposite for photochemical water oxidation: active structure stabilized in the interface, ACS Applied Materials & Interfaces, 8 (2016) 27825-27831.
    [51] F. Li, Y. Xing, M. Huang, K. L. Li, T. T. Yu, Y. X. Zhang, D. Losic, MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors, Journal of Materials Chemistry A, 3 (2015) 7855-7861.
    [52] J. M. d. O. Cremonezzi, D. Y. Tiba, S. H. Domingues, Fast synthesis of δ-MnO2 for a high-performance supercapacitor electrode, SN Applied Sciences, 2 (2020) 1-9.
    [53] S. Min, Y. Kim, Physicochemical characteristics of the birnessite and todorokite synthesized using various methods, Minerals, 10 (2020) 884.
    [54] M. Zheng, H. Zhang, X. Gong, R. Xu, Y. Xiao, H. Dong, X. Liu, Y. Liu, A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area, Nanoscale Research Letters, 8 (2013) 1-7.
    [55] Y. Zhou, L. Guo, W. Shi, X. Zou, B. Xiang, S. Xing, Rapid production of Mn3O4/rGO as an efficient electrode material for supercapacitor by flame plasma, Materials, 11 (2018) 881.
    [56] M. Huang, Y. Zhang, F. Li, L. Zhang, R. S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors, Scientific Reports, 4 (2014) 1-8.
    [57] Y. Lin, S. Zhao, J. Qian, N. Xu, X. Q. Liu, L. B. Sun, W. Li, Z. Chen, Z. Wu, Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance, Journal of Materials Science, 55 (2020) 2139-2154.
    [58] H. U. Shah, F. Wang, A. M. Toufiq, S. Ali, Z. U. H. Khan, Y. Li, J. Hu, K. He, Electrochemical properties of controlled size Mn3O4 nanoparticles for supercapacitor applications, Journal of Nanoscience and Nanotechnology, 18 (2018) 719-724.
    [59] C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J. Pereira-Ramos, Raman spectra of birnessite manganese dioxides, Solid State Ionics, 159 (2003) 345-356.
    [60] M. Jayashree, M. Parthibavarman, R. BoopathiRaja, S. Prabhu, R. Ramesh, Ultrafine MnO2/graphene based hybrid nanoframeworks as high-performance flexible electrode for energy storage applications, Journal of Materials Science: Materials in Electronics, 31 (2020) 6910-6918.
    [61] S. D. Jiang, Z. M. Bai, G. Tang, L. Song, A. A. Stec, T. R. Hull, J. Zhan, Y. Hu, Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism, Journal of Materials Chemistry A, 2 (2014) 17341-17351.
    [62] J. Ji, X. Lu, C. Chen, M. He, H. Huang, Potassium-modulated δ-MnO2 as robust catalysts for formaldehyde oxidation at room temperature, Applied Catalysis B: Environmental, 260 (2020) 118210.
    [63] B. Zhang, S. Hao, D. Xiao, J. Wu, Y. Huang, Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials, Materials & Design, 98 (2016) 319-323.
    [64] M. Ma, Y. Bi, Z. Tong, Y. Liu, P. Lyu, R. Wang, Y. Ma, G. Wu, Z. Liao, Y. Chen, Recent progress of MOF-derived porous carbon materials for microwave absorption, RSC Advances, 11 (2021) 16572-16591.
    [65] X. Chen, S. Yan, N. Wang, S. Peng, C. Wang, Q. Hong, X. Zhang, S. Dai, Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes, RSC Advances, 7 (2017) 55734-55740.
    [66] Y. Sun, X. Hu, W. Luo, Y. Huang, Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties, Journal of Materials Chemistry, 22 (2012) 19190-19195.
    [67] M. Ramadan, A. M. Abdellah, S. G. Mohamed, N. K. Allam, 3D interconnected binder-free electrospun MnO@C nanofibers for supercapacitor devices, Scientific Reports, 8 (2018) 1-8.
    [68] X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, Y. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochimica Acta, 89 (2013) 523-529.
    [69] S. Zhu, W. Huo, X. Liu, Y. Zhang, Birnessite based nanostructures for supercapacitors: challenges, strategies and prospects, Nanoscale Advances, 2 (2020) 37-54.
    [70] H. Huang, C. Chen, R. Yang, Y. Yu, R. Albilali, C. He, Remarkable promotion effect of lauric acid on Mn-MIL-100 for non-thermal plasma-catalytic decomposition of toluene, Applied Surface Science, 503 (2020) 144290.
    [71] F. Wang, S. Li, Determination of the surface fractal dimension for porous media by capillary condensation, Industrial & Engineering Chemistry Research, 36 (1997) 1598-1602.
    [72] Y. Liu, Y. Zhu, Y. Wang, S. Chen, Fractal characteristics of nanoscale pores in shale and its implications on methane adsorption capacity, Fractals, 27 (2019) 1940014.
    [73] A. Kumar, M. Aathira, U. Pal, S. L. Jain, Photochemical oxidative coupling of 2-naphthols using hybrid rGO/MnO2 nanocomposite under visible light irradiation, ChemCatChem, 10 (2018) 1844-1852.
    [74] S. Tang, P. Tong, X. You, W. Lu, J. Chen, G. Li, L. Zhang, Label free electrochemical sensor for Pb2+ based on graphene oxide mediated deposition of silver nanoparticles, Electrochimica Acta, 187 (2016) 286-292.
    [75] S. J. Wang, Y. Geng, Q. Zheng, J. K. Kim, Fabrication of highly conducting and transparent graphene films, Carbon, 48 (2010) 1815-1823.
    [76] G. Carotenuto, A. Longo, S. De Nicola, C. Camerlingo, L. Nicolais, A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets, Nanoscale Research Letters, 8 (2013) 1-6.
    [77] R. Senthil, A. Selvi, P. Arunachalam, L. Amudha, J. Madhavan, A. M. Al-Mayouf, A sensitive electrochemical detection of hydroquinone using newly synthesized α-Fe2O3-graphene oxide nanocomposite as an electrode material, Journal of Materials Science: Materials in Electronics, 28 (2017) 10081-10091.
    [78] S. Tang, J. Sun, H. Hong, Q. Liu, Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review, Frontiers in Energy, 11 (2017) 437-451.
    [79] L. Zhu, D. Shen, K. H. Luo, A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods, Journal of Hazardous Materials, 389 (2020) 122102.
    [80] P. Sun, H. Yu, T. Liu, Y. Li, Z. Wang, Y. Xiao, X. Dong, Efficiently photothermal conversion in a MnOx-based monolithic photothermocatalyst for gaseous formaldehyde elimination, Chinese Chemical Letters, 33 (2022) 2564-2568.
    [81] C. Hu, W. F. Tsai, W. H. Wei, K. Y. A. Lin, M. T. Liu, K. Nakagawa, Hydroxylation and sodium intercalation on g-C3N4 for photocatalytic removal of gaseous formaldehyde, Carbon, 175 (2021) 467-477.
    [82] H. Wang, J. Zhang, X. Hang, X. Zhang, J. Xie, B. Pan, Y. Xie, Half‐metallicity in single‐layered manganese dioxide nanosheets by defect engineering, Angewandte Chemie, 127 (2015) 1211-1215.
    [83] L. Zhu, J. Wang, S. Rong, H. Wang, P. Zhang, Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature, Applied Catalysis B: Environmental, 211 (2017) 212-221.
    [84] C. Ma, J. Yan, Y. Huang, C. Wang, G. Yang, The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion, Science Advances, 4 (2018) 9894.
    [85] Y. Zheng, W. Wang, D. Jiang, L. Zhang, Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity, Chemical Engineering Journal, 284 (2016) 21-27.
    [86] W. Yang, Y. Zhu, F. You, L. Yan, Y. Ma, C. Lu, P. Gao, Q. Hao, W. Li, Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2, Applied Catalysis B: Environmental, 233 (2018) 184-193.
    [87] J. Zhao, J. Nan, Z. Zhao, N. Li, J. Liu, F. Cui, Energy-efficient fabrication of a novel multivalence Mn3O4-MnO2 heterojunction for dye degradation under visible light irradiation, Applied Catalysis B: Environmental, 202 (2017) 509-517.

    無法下載圖示 全文公開日期 2027/08/15 (校內網路)
    全文公開日期 2027/08/15 (校外網路)
    全文公開日期 2027/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE