簡易檢索 / 詳目顯示

研究生: 陳鈺智
Yu-Chih Chen
論文名稱: 密度泛函理論計算於甲烷在銥金屬改質之二氧化鈦(110)表面的催化與合成反應之研究
Density-Functional Theory Studies of Methane Activation and C-C Coupling on Ir Modified TiO2 (110) Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn D. Lin
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 82
中文關鍵詞: 碳碳以及碳氧偶合反應脫氫反應密度泛函理論二氧化銥表面二氧化鈦(110)表面烷烴類活化
外文關鍵詞: C-C and C-O coupling reaction, dehydrogenation reaction, DFT, IrO2 surface, TiO2(110)surface, Alkane activation
相關次數: 點閱:264下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於石油儲備的降低,使得甲烷逐漸被認為是重要的化工原料。此外,水力壓裂技術的發展用於頁岩氣提取的發展也有效提高甲烷等低碳烷烴的供應。因此,將甲烷轉化成其他高附加價值的化學產品,如乙烯,將會帶來巨大的利益。然而,在甲烷的穩定的C-H鍵的活化是在轉換過程中一個具有挑戰性的任務。最近,在金屬氧化物表面的甲烷活化,被認為是直接轉換甲烷轉化成其他有價值的化學品的方法中,最具有成本效益的方法。但是,甲烷與許多金屬氧化物的相互作用非常弱,導致難以搜索能有效促進活化且合適的金屬氧化物催化劑。在先前的研究中,為甲烷在二氧化銥(IrO2)上的脫氫且直接轉化甲烷成乙烯的研究奠定了初步基礎。雖然,甲烷活化在IrO2表面具有低能障,但是催化劑的成本很高。為了設計出高效,低成本的催化劑,在這裡我們使用密度泛函理論(DFT)方法去計算在覆蓋一層二氧化銥的二氧化鈦 (TiO2)表面以及一個銥原子摻雜的二氧化鈦表面上的甲烷活化。同時我們也探討了,在一層二氧化銥覆蓋的二氧化鈦表面上的乙烷和乙烯形成的C-C偶合反應,並且還探討了在銥摻雜的二氧化鈦表面上甲醇形成的C-O偶合反應。在一層二氧化銥覆蓋的二氧化鈦表面上的甲烷脫氫反應中,計算所得的反應障礙為0.55電子伏特,這是比在該表面上的吸附能(-0.70電子伏特)低,因此,我們可以預期,甲烷轉化率在該表面上會很高。在另一方面,在銥摻雜的二氧化鈦脫氫表面,計算的反應障礙為0.65電子伏特,比吸附能(-0.57電子伏特)高,但如果我們控制實驗條件,甲烷轉化仍然是可能的。在一層二氧化銥覆蓋的二氧化鈦表面上的C-C偶合反應,其能障非常接近的純二氧化銥表面,這顯示,這樣設計的表面將會是對於甲烷直接轉化的高效催化劑。在銥摻雜的二氧化鈦表面上的C-O偶合反應,甲醇生成的能障比純IrO2表面的高,但它仍然是一個可能的反應。這些結果顯示,不僅一層IrO2,甚至只有一個銥原子,其活性仍然可以保持。


Methane is attracted as a chemical feedstock in recent years because of declining petroleum reserves. Additionally, the development of fracking technologies for the extraction of shale gas have efficiently increased the supply of methane and other light alkanes. Hence, the chemical conversion of methane into value-added chemical products such as ethylene would be enormous beneficial. However, the activation of the stable C–H bond in methane is a challenging task in the conversion process. Recently, methane activation on metal oxide surfaces is considered as a cost-effective method to convert methane directly into value-added chemicals. However, a very weak interaction of methane with many oxides leads to search for a suitable metal oxide catalyst which can efficiently promote the activation. The previous study on methane dehydrogenation on IrO2(110) provides an initial basis for the direct conversion of methane into ethylene under mild temperature conditions. Even though, methane activation on IrO2 surface has low energy barrier, the cost of catalyst design is still high. In order to design the efficient and low cost catalyst, here we investigated the effect of one IrO2 layer support on TiO2 (110) surface and one Iridium atom doped TiO2(110) surface for the methane activation by using density functional theory (DFT) methods. We also have investigated the C-C coupling of ethane and ethylene formation on the IrO2 layer supported TiO2 surface and also the investigated the C-O coupling of methanol formation on Ir-doped TiO2 surface. The calculated reaction barriers for CH4 dehydrogenation on IrO2/TiO2 is 0.55 eV, which is lower than the adsorption energy (-0.70 eV) on this surface, so, we can predict that methane conversion is possible on this surface. In the other hand, the calculated reaction barriers for CH4 dehydrogenation on Ir-doped TiO2 is 0.74 eV, is higher than the adsorption energy (-0.57 eV), but methane conversion is still possible if we control the experimental condition. For the C-C coupling reactions on IrO2/TiO2 surface, the energy barriers are very close to the values that of pure IrO2 surface, which indicate that this designed surface would be an efficient catalyst for the direct conversion of methane. For C-O coupling reaction on Ir-doped TiO2 surface, the energy barrier for methanol is higher than the value that of pure IrO2 surface, but it still a possible reaction. Those results shows that not only one layer IrO2, the activity still can remain even there is only one Ir atom.

Abstract 摘要 致謝 Table of Contents List of Tables List of Figures Chapter 1. Introduction 8 1.1 Natural Gas 8 1.2 Shale Gas 11 1.3 Methane Conversions 12 1.4 Iridium Dioxide 15 1.5 Titanium Dioxide 17 Chapter 2. Computational Details 18 2.1 Method 18 2.2 Surface model 20 Chapter 3. Methane Activation and Reactions on the IrO2 /TiO2(110) Surface 31 3.1 Adsorption of CHx (x= 0-4) on the IrO2/TiO2 Surface 31 3.2 Dehydrogenation of CHx (x = 1-4) on the IrO2/TiO2 Surface 38 3.3 C-C Coupling reactions on the IrO2/TiO2 Surface 43 3.4 Dehydrogenation of C2Hx on the IrO2/TiO2 Surface 46 3.5 Conclusions 50 Chapter 4. Methane Activation and Reactions on the Ir-doped TiO2(110) Surface 51 4.1 Adsorption of CHx (x= 0-4) on the Ir-doped TiO2 Surface 51 4.2 Dehydrogenation of CHx (x = 1-4) by Obr on the Ir-doped TiO2 Surface 58 4.3 C-O Coupling reactions on the Ir-doped TiO2 Surface 63 4.4 Conclusions 66 Chapter 5. Summary 67 References 69 Appendix………………………………………………………………74

1. Dry, M. E., Practical and Theoretical Aspects of the Catalytic Fischer-Tropsch Process. Applied Catalysis, A: General 1996, 138, 319-344.
2. Lange, J.-P., Methanol Synthesis: A Short Review of Technology Improvements. Catalysis Today 2001, 64, 3-8.
3. Lunsford, J. H., Catalytic Conversion of Methane to More Useful Chemicals and Fuels: A Challenge for the 21st Century. Catalysis Today 2000, 63, 165-174.
4. Holmen, A., Direct Conversion of Methane to Fuels and Chemicals. Catalysis Today 2009, 142, 2-8.
5. Alvarez-Galvan, M. C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R. M.; Fierro, J. L. G., Direct Methane Conversion Routes to Chemicals and Fuels. Catalysis Today 2011, 171, 15-23.
6. Hammond, C.; Conrad, S.; Hermans, I., Oxidative Methane Upgrading. ChemSusChem 2012, 5, 1668-86.
7. Srivastave, R. D.; Zhou, P.; Stiegel, G. J.; Rao, V. U. S.; Cinquegrane, G., Direct Conversion of Methane to Liquid Fuels and Chemicals. In Catalysis: Volume 9, Spivey, J. J., Ed. The Royal Society of Chemistry: 1992; Vol. 9, pp 183-228.
8. Tang, P.; Zhu, Q.; Wu, Z.; Ma, D., Methane Activation: The Past and Future. Energy & Environmental Science 2014, 7, 2580-2591.
9. Keller, G. E.; Bhasin, M. M., Synthesis of Ethylene Via Oxidative Coupling of Methane: I. Determination of Active Catalysts. Journal of Catalysis 1982, 73, 9-19.
10. Ito, T.; Lunsford, J. H., Synthesis of Ethylene and Ethane by Partial Oxidation of Methane over Lithium-Doped Magnesium Oxide. Nature 1985, 314, 721-722.
11. Sofranko, J. A.; Leonard, J. J.; Jones, C. A., The Oxidative Conversion of Methane to Higher Hydrocarbons. Journal of Catalysis 1987, 103, 302-310.
12. Otsuka, K.; Wang, Y., Direct Conversion of Methane into Oxygenates. Applied Catalysis A: General 2001, 222, 145-161.
13. Huang, Y.; Du, J.; Ling, C.; Zhou, T.; Wang, S., Methane Dehydrogenation on Au/Ni Surface Alloys – a First-Principles Study. Catalysis Science & Technology 2013, 3, 1343.
14. Santen, I. M. C. a. R. A. v., A Dft Study of Chx Chemisorption and Transition States for C-H Activation on the
Ru(112h0) Surface. J. Phys. Chem. B 2002, 106, 6200-6205.
15. Xing, B.; Pang, X.-Y.; Wang, G.-C., C–H Bond Activation of Methane on Clean and Oxygen Pre-Covered Metals: A Systematic Theoretical Study. Journal of Catalysis 2011, 282, 74-82.
16. Weaver, J. F.; Hinojosa Jr, J. A.; Hakanoglu, C.; Antony, A.; Hawkins, J. M.; Asthagiri, A., Precursor-Mediated Dissociation of N-Butane on a Pdo(101) Thin Film. Catalysis Today 2011, 160, 213-227.
17. Pham, T. L. M.; Leggesse, E. G.; Jiang, J. C., Ethylene Formation by Methane Dehydrogenation and C-C Coupling Reaction on a Stoichiometric Iro2 (110) Surface - a Density Functional Theory Investigation. Catalysis Science & Technology 2015.
18. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y., Synthesis and Activities of Rutile Iro2 and Ruo2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3, 399-404.
19. Reier, T.; Oezaslan, M.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction (Oer) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis 2012, 2, 1765-1772.
20. Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y., Orientation-Dependent Oxygen Evolution Activities of Rutile Iro2 and Ruo2. The Journal of Physical Chemistry Letters 2014, 5, 1636-1641.
21. Sun, W.; Song, Y.; Gong, X.-Q.; Cao, L.-m.; Yang, J., An Efficiently Tuned D-Orbital Occupation of Iro2 by Doping with Cu for Enhancing the Oxygen Evolution Reaction Activity. Chemical Science 2015, 6, 4993-4999.
22. Kadakia, K. S.; Jampani, P. H.; Velikokhatnyi, O. I.; Datta, M. K.; Park, S. K.; Hong, D. H.; Chung, S. J.; Kumta, P. N., Nanostructured F Doped Iro2 Electro-Catalyst Powders for Pem Based Water Electrolysis. Journal of Power Sources 2014, 269, 855-865.
23. Song, Y.; Yang, J.; Gong, X.-Q., Prediction of Ir0.5m0.5o2 (M = cr, Ru or Pb) Mixed Oxides as Active Catalysts for Oxygen Evolution Reaction from First-Principles Calculations. Topics in Catalysis 2015, 1-7.
24. Chandra, D.; Abe, N.; Takama, D.; Saito, K.; Yui, T.; Yagi, M., Open Pore Architecture of an Ordered Mesoporous Iro2 Thin Film for Highly Efficient Electrocatalytic Water Oxidation. ChemSusChem 2015, 8, 795-799.
25. Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J., Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces. Physical Chemistry Chemical Physics 2010, 12, 283-290.
26. Moser, M.; Mondelli, C.; Amrute, A. P.; Tazawa, A.; Teschner, D.; Schuster, M. E.; Klein-Hoffman, A.; López, N.; Schmidt, T.; Pérez-Ramírez, J., Hcl Oxidation on Iro2-Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis 2013, 3, 2813-2822.
27. Kawar, R. K.; Chigare, P. S.; Patil, P. S., Substrate Temperature Dependent Structural, Optical and Electrical Properties of Spray Deposited Iridium Oxide Thin Films. Applied Surface Science 2003, 206, 90-101.
28. Nishio, K.; Watanabe, Y.; Tsuchiya, T., Preparation and Properties of Electrochromic Iridium Oxide Thin Film by Sol-Gel Process. Thin Solid Films 1999, 350, 96-100.
29. Jaw-Chyng, L.; Shuchi, C., Fabrication and Characterization of I R O 2 -Based Microsensors for Fast Detection of Carbon Dioxide. Japanese Journal of Applied Physics 1997, 36, 2292.
30. Kinlen, P. J.; Heider, J. E.; Hubbard, D. E., A Solid-State Ph Sensor Based on a Nafion-Coated Iridium Oxide Indicator Electrode and a Polymer-Based Silver Chloride Reference Electrode. Sensors and Actuators B: Chemical 1994, 22, 13-25.
31. Wipf, D. O.; Ge, F.; Spaine, T. W.; Baur, J. E., Microscopic Measurement of Ph with Iridium Oxide Microelectrodes. Analytical Chemistry 2000, 72, 4921-4927.
32. Chen, Y. M.; Huang, Y. S.; Lee, K. Y.; Tsai, D. S.; Tiong, K. K., Characterization of Iro2/Cnt Nanocomposites. J Mater Sci: Mater Electron 2011, 22, 890-894.
33. He, Y. B.; Stierle, A.; Li, W. X.; Farkas, A.; Kasper, N.; Over, H., Oxidation of Ir(111): From O−Ir−O Trilayer to Bulk Oxide Formation. The Journal of Physical Chemistry C 2008, 112, 11946-11953.
34. Chung, W.-H.; Tsai, D.-S.; Fan, L.-J.; Yang, Y.-W.; Huang, Y.-S., Surface Oxides of Ir(111) Prepared by Gas-Phase Oxygen Atoms. Surface Science 2012, 606, 1965-1971.
35. Chung, W.-H.; Wang, C.-C.; Tsai, D.-S.; Jiang, J.-C.; Cheng, Y.-C.; Fan, L.-J.; Yang, Y.-W.; Huang, Y.-S., Deoxygenation of Iro2(1 1 0) Surface: Core-Level Spectroscopy and Density Functional Theory Calculation. Surface Science 2010, 604, 118-124.
36. Patil, P. S.; Chigare, P. S.; Sadale, S. B.; Seth, T.; Amalnerkar, D. P.; Kawar, R. K., Thickness-Dependent Properties of Sprayed Iridium Oxide Thin Films. Materials Chemistry and Physics 2003, 80, 667-675.
37. Sen, F. In Iro 2 Surface and Nanostructure Stability from First Principles and Variable Charge Force Field Calculations, 227th ECS Meeting (May 24-28, 2015), Ecs: 2015.
38. Gordon B. Haxel, J. B. H., and Greta J. Orris, Rare Earth Elements—Critical Resources for High Technology. USGS Fact Sheet 2002, 087-02.
39. Frank, S. N.; Bard, A. J., Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at Titanium Dioxide Powder. Journal of the American Chemical Society 1977, 99, 303-304.
40. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
41. Kristine Drew, ‡ G. Girishkumar,† K. Vinodgopal,†,§ and Prashant V. Kamat*,†, Boosting Fuel Cell Performance with a Semiconductor Photocatalyst: Tio2/Pt-Ru Hybrid
Catalyst for Methanol Oxidation. J. Phys. Chem. B 2005, 109.
42. Walther, G.; Jones, G.; Jensen, S.; Quaade, U. J.; Horch, S., Oxidation of Methane on Nanoparticulate Au/Tio2 at Low Temperature: A Combined Microreactor and Dft Study. Catalysis Today 2009, 142, 24-29.
43. C. Elmasides, D. I. K., † W. Gru1nert,‡ and X. E. Verykios*,†, Xps and Ftir Study of Ru/Al2o3 and Ru/Tio2 Catalysts: Reduction Characteristics and
Interaction with a Methane-Oxygen Mixture. J. Phys. Chem. B 1999, 103, 5227-5239.
44. Bradford, M. C. J.; Albert Vannice, M., The Role of Metal–Support Interactions in Co2 Reforming of Ch4. Catalysis Today 1999, 50, 87-96.
45. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
46. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251-14269.
47. Kresse, G.; Furthmuller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comp Mater Sci 1996, 6, 15-50.
48. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van Der Waals Density Functionals Applied to Solids. Physical Review B 2011, 83, 195131.

QR CODE