簡易檢索 / 詳目顯示

研究生: 賴信凱
Shin-kai Lai
論文名稱: 二極體中金屬與高分子間介電層結構對元件性能的影響
Effects of Structure of Dielectric Layers between Metal and Semiconducting Polymer on Device Performance of Diodes
指導教授: 胡孝光
Shiaw-guang Hu
口試委員: 王立義
Li-yi Wang
李俊毅
Jiun-yih Lee
李奎毅
Kuei-yi Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: MEH-PPV介電層高分子發光二極體
外文關鍵詞: MEH-PPV, dielectric layer, PLED
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由製備ITO/poly(2-methoxy,5-(2´-ethyl-hexoxy)-1,4-phenylenevinylene)(MEH-PPV)(120 nm)/dielectric layer/Al (250 nm)元件,探討在MEH-PPV及Al界面間介電層結構對元件性能的影響。我們從元件電壓-電流-亮度特性曲線計算元件外部量子效率效率,再藉由量測UV-Vis吸收光譜、光激發光光譜及時間解析光激發光光譜計算MEH-PPV光激發光量子效率後,利用元件外部量子效率及MEH-PPV光激發光量子效率進一步計算得到載子再結合效率。
MEH-PPV及Al界面間含18~22 nm PMMA介電層元件或含0.8~1.2 nm含氧化鋁混合物介電層元件,其元件電壓-電流特性曲線顯示元件的起始電壓隨著介電層厚度增加而增加。經170℃熱處理ITO/MEH-PPV/Al元件之電壓-電流特性曲線顯示元件的起始電壓比未經過熱處理的元件低。藉由元件載子再結合效率計算結果發現,含氧化鋁混合物介電層元件載子再結合效率隨著加入介電層厚度增加而降低、經170℃熱處理的元件載子再結合效率比未經過熱處理的元件高,這是因為介電層厚度增加使得電子注入變困難,而170℃熱處理元件因為MEH-PPV高分子與Al金屬界面產生化學反應,電子注入能障相對於未經過熱處理元件低使電子注入較容易所造成。此外,我們發現元件最大亮度時,元件發光功率效率未達到最大。


This work is to prepare diodes consisting of ITO/poly(2- methoxy,5-(2′- ethyl-hexoxy)-1,4-phenylenevinylene)(MEH- PPV)(120 nm)/dielectric layer/Al(250 nm), and investigate the influence of the structure of dielectric layers between MEH-PPV and Al on device efficiencies. The measured voltage- current-brightness characteristics of devices were used to yield external quantum efficiency of devices. The UV-Vis spectra, steady and time-resolved photoluminescence of MEP-PPV in solution and bulk were combined to compute the photoluminescence efficiency of bulk polymer, leading finally to the carrier recombination efficiency in devices.
For PMMA dielectric (thickness= 18 to 22 nm) or mixtures containing aluminum oxide (thickness= 0.8 to 1.2 nm), the voltage-current curves of devices indicate an increase of turn-on voltage with the thickness of dielectric layer. ITO/MEH-PPV/Al device thermally treated at 170℃ is possessed with a lower turn-on voltage than the untreated one. The carrier recombination efficiency for devices with aluminum oxide dielectric decreases with layer thickness, whereas the recombination efficiency for thermally treated ITO/MEH-PPV/Al is higher than the untreated one. This is explained by the increasing barrier height for electron injection caused by the thicker dielectric layer, and the lowering of barrier height due to the formation of interfacial composition resulting from the interfacial reaction between MEH-PPV and Al cathode. Moreover, it is found that, while the device reaches the maximum brightness at a certain voltage, they do not offer the maximum luminous efficiency.

中文摘要……………………………………………………Ⅰ 英文摘要……………………………………………………Ⅲ 誌謝…………………………………………………………Ⅴ 目錄…………………………………………………………Ⅵ 圖表索引……………………………………………………Ⅸ 一、前言………………………………………………………1 二、實驗方法…………………………………………………6 2.1 MEH-PPV固態光激發光效率測定………………………6 2.1.1 溶液態及固態UV-Vis吸收光譜分析………………6 2.1.2 溶液態及固態光激發光光譜分析…………………6 2.1.3 固態時間解析光激發光光譜分析…………………7 2.2 元件製作…………………………………………………8 2.2.1 ITO玻璃清洗及蝕刻…………………………………8 2.2.2 MEH-PPV高分子溶液塗佈 …………………………8 2.2.3 PMMA界電層製作……………………………………9 2.2.4 含Al2O3混合物界電層製作…………………………9 2.2.5 電極蒸鍍 ……….…………………………………10 2.3 元件電流-電壓-亮度特性量測………………………10 2.4 元件中薄膜分析 …………………………………11 2.4.1 薄膜表面分析……………………………………11 2.4.2 薄膜厚度測量…………………………………11 三、結果與討論…………………………………………………15 3.1 MEH-PPV固態光激發光的量子效率決定……………15 3.1.1 MEH-PPV的激子固有生命期探討………………15 3.1.2固態MEH-PPV的激子生命期探討………………19 3.1.3固態MEH-PPV光激發光的量子效率計算………21 3.2 PMMA介電層厚度對元起始電壓的影響 …………21 3.3 含氧化鋁混合物介電層厚度對元件起始電壓、外部量子效率、載子再結合效率的影 響…………………………23 3.4 170 ℃熱處理對元件起始電壓、外部量子效率、載子再結 合效率的影響……………………………………………28 四、結論………………………………………………………29 五、參考文獻…………………………………………………31

1.D. D. C. Bradley, Adv. Mater., 4, 756(1992).
2.D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D. K. Fu, T. M.
Swager, A. G. MacDiarmid, A. J. Epstein, Appl.Phys. Lett., 70, 1644(1997).
3.Y. Shi, J. Liu, Y. Yang, J. Appl. Phys., 87, 4254(2000).
4.U. Lemmer, D. Vacar, D. Moses, A. J. Heeger, T. Ohnishi, T. Noguchi, Appl.
Phys. Lett., 68, 3007(1996).
5.H. Antoniadis, M. A. Abkowitz, J. A. Osahemi, S. A.Jenekhe, M. Stolka,
Synth. Met., 60, 149(1993).
6.W. Rieß, S. Karg, V. Dyakonov, M. Meier, M. Schwoerer, J. Lumin., 60, 906
(1994).
7.N. S. Sariciftci, D. Braum, C. Zhang, V. I. Srdanov, A. J. Heeger, G.
Stucky, F. Wudl, Appl. Phys. Lett., 62, 585(1993).
8.G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, J. C. Jo, Jpn. J. Appl.
Phys., 35, 114(1996).
9.M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Science, 252, 1412
(1991).
10.A. Ohtani, A. M. Ezoe, T. Doi, T. Miyata, A. Miyaka, Synth.Met., 55-57, 3696
(1993).
11.D. A. Skoog, D. M. West, F. J. Holler, “Fundamentals of Analytical
Chemistry”, 5th Ed., Saunders College Publishing, pp. 534(1988).
12.E. L. Wehry, “Modern Fluorescence Spectroscopy”, Vol. 2, Plenum Press,
New York, pp. 93(1976).
13.A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burn, J. H. Burroughes,
R. H. Friend, N. C. Greenham, A. W. Gymer, D. A. Halliday, R. W. Jackson,
A. Kraft, J. H. F. Martens, K. Pichler, I. D. W. Samuel, Synth. Met., 55-
57, 4031(1993).
14.I. D. Parker, J. Appl. Phys., 75, 1656(1994).
15.A. J. Heeger, I. D. Parker, Y. Yang, Synth. Metals.,67, 23(1994).
16.D. L. Smith, I. H. Campbell, Appl. Phys. Lett., 74, 561(1999).
17.Y. H. Niu, H. Ma, Q. Xu, A. K.-Y. Jen, Appl. Phys. Lett., 86, 083504(2005).
18.Z. B. Deng, X. M. Ding, S. T. Lee, W. A. Gambling, Appl. Phys. Lett., 74,
2227(1999).
19.K. L. Wang, B. Lai, M. Lu, X. Zhou, L. S. Liao, X. M. Ding, X. Y. Hou, S.
T. Lee, Thin Solid Films, 363, 178(2000).
20.J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong,
Z. J. Wang, X. M. Ding, W. Huang, X. Y. Hou, Appl. Phys. Lett., 84, 2913
(2003).
21.Y. E. Kim, H. Park, J. J. Kim, Appl. Phys. Lett., 69, 599(1996).
22.F. Li, H. Tang, J. Anderegg, J. Shinar, Appl. Phys. Lett., 70, 1233(1997).
23.S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J.
Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, X. Y. Hou, Appl. Phys. Lett., 84,
425(2004).
24.J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, Y. C. Kim, Appl. Phys. Lett.,
84, 1783(2004).
25.A. Crispin, A. Jonsson, M. Fahlman, W. R. Salaneck, J. Chem. Phys., 115,
5252(2001).
26.T. W. Lee, O. O. Park, Appl. Phys. Lett., 77, 3334(2000).
27.S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
28.C. Reichardt, “ Solvents and Solvent Effects in Organic Chemistry”, 2nd
Ed., VCH Publishing, New York, PP. 408-410(1998).
29.S. J. Strickler, R. A. Berg, J. Chem. Phys., 37, 814(1962).
30.L. Smilowitz, A. Hays, A. J. Heeger, G. Wang, J. E. Bowers, J. Chem. Phys,
98, 6504(1993).
31.N. J. Turro, “Molecular Photochemistry”, W. A. Benjamin, New York, pp. 6
(1967).
32.M. Klessinger, J. Michl, “Excited State and Photochemistry of Organic
Molecules”, VCH Publishing, New York, pp. 248 (1995).
33.J. C. de Mello, H. F. Wittmann, R. H. Friend, Adv, Mat., 9, 230(1997).
34.A. F. J. Levi, “Applied Quantum Mechanics ”, Cambridge ; New York :
Cambridge University Press, pp. 212 (2003).
35.M. Baldo, Organic Optoelectronics , course 17 Lecture, MIT (2003).
36.A. Moliton, R. C. Hiorns, Poly. Int., 53, 1397(2004).
37.Y. He, R. Hattori, J. Kanicki, Rev. Sci. Istrum., 71, 2104 (2000).
38.Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Hegger, Nature, 397, 414(1999).
39.Y. Kawabe, M. M. Morrell, G. E. Jabbour, S. E. Shaheen, B. Kippelen, N.
Peyhambarian, J. Appl. Phys., 84, 5306(1998).
40.A. B. Walker, A. Kambili, S. J. Martin, J. Phys. :Conden. Matter, 14, 9925
(2002).
41.B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, Appl. Phys. Lett.,
73, 3162(1998).
42.S. M. Sayyah, A. B. Khaliel, Int. J. Polym. Mater., 54, 505(2005).

無法下載圖示 全文公開日期 2012/07/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE