簡易檢索 / 詳目顯示

研究生: 鄭鴻偉
Hung-Wei Cheng
論文名稱: 基於電流饋入推挽式轉換器之隔離型混合儲能系統研製
Design and Implementation of an Isolated Hybrid Energy Storage System Based on Current-Fed Push-Pull Converter
指導教授: 林長華
Chang-Hua Lin
口試委員: 劉添華
Tian-Hua Liu
白凱仁
Kai-Jun Pai
王見銘
Chien-Ming Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 213
中文關鍵詞: 電流饋入推挽式轉換器加相移控制混合儲能系統
外文關鍵詞: Current-fed Push-Pull Converter, Plus Phase-Shift Control, Hybrid Energy Storage System
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研究隔離型電動車混合儲能系統,在電池儲能系統另加入超級電容及雙向電流饋入推挽式轉換器,以實現電池/超級電容半主動混合儲能系統。其次,所提系統採用”加相移控制”(Plus Phase-Shift PWM Control, PPS),並完成各工作模式之狀態分析。再者,考量實際電路之開關死區時間及開關寄生電容的影響,利用開關責任週期控制,有效地延展開關之柔性切換範圍,並推導出各個開關完成柔性切換的條件,再經由理論、模擬、實測加以驗證。本文為了降低混合儲能系統回授電路之複雜度,並保留回授控制所需之負載功率回授,利用超級電容之非理想模型,以取得超級電容能量變化,藉此進行負載功率估測。此外,本文提出基於超級電容電壓範圍及負載平均功率作為模式判斷之Rule-based控制策略,以實現多工作模式之混合儲能系統,有效地降低電池電流應力,並減少往返於電池及超級電容所造成的能量損失,以及穩定負載匯流排電壓。 最後,透過建立混合儲能系統測試平台,驗證模擬與實測結果,證明所提之控制策略的可行性。


This thesis aims to design and implement the isolated electric vehicle hybrid energy storage system (HESS). The proposed system combines battery, supercapacitor (SC) and current-fed push-pull (CFPP) converter to achieve the battery/supercapacitor semi-active HESS. Moreover, the “Plus Phase-shift (PPS) PWM Control” is used to drive the CFPP converter and to complete the state analysis of each operating mode. Furthermore, the influence of deadtime and the effect of MOSFET parasitic capacitance are considered, and the duty cycle control is used to effectively extend the zero-voltage switching (ZVS) range of the power switch. And the conditions for each switch to achieve ZVS are also derived, and verified by the theoretical predictions, simulation and experiment results. Next, to reduce the complexity of the feedback circuit of the HESS and retain the load power feedback required for feedback control, the SC non-ideal model is employed to obtain the energy change of the SC to estimate the load power. In addition, a rule-based control strategy is proposed based on SC voltage range and average load power to implement a multi-mode HESS, effectively reduce battery current stress and the energy loss caused by the battery and SC, and stabilize load bus voltage. Finally, a HESS measurement platform is constructed to verify the simulation and experimant results to prove the feasibility of the proposed control strategy.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 X 表目錄 XV 1 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 論文架構 9 2 第二章 電動車混合儲能系統之系統分析 10 2.1 混合儲能系統架構簡介 10 2.1.1 雙向混合儲能系統之架構介紹 12 2.1.2 主動箝位之電流饋入推挽式雙向轉換器 13 2.2 主動箝位之電流饋入推挽式雙向轉換器工作模式 15 2.3 “加相移控制”工作模式d(+)與理論分析 20 2.3.1 工作模式d(+)之工作原理 22 2.3.2 工作模式d(+)之功率傳輸能力 27 2.3.3 工作模式d(+)之開關零電壓切換分析 28 2.4 “加相移控制”工作模式c(+)與理論分析 30 2.4.1 工作模式c(+)之工作原理 32 2.4.2 工作模式c(+)之功率傳輸能力 37 2.4.3 工作模式c(+)之開關零電壓切換分析 38 2.5 “加相移控制”工作模式c(-)與理論分析 39 2.5.1 工作模式c(-)之工作原理 41 2.5.2 工作模式c(-)之功率傳輸能力 46 2.5.3 工作模式c(-)之開關零電壓切換分析 47 2.6 “加相移控制”工作模式d'(-)與理論分析 48 2.6.1 工作模式d'(-)之工作原理 50 2.6.2 工作模式d'(-)之功率傳輸能力 55 2.6.3 工作模式d'(-)之零電壓切換分析 56 2.7 “加相移控制”工作模式c'(-)與理論分析 57 2.7.1 工作模式c'(-)之工作原理 59 2.7.2 工作模式c'(-)之功率傳輸能力 63 2.7.3 工作模式c'(-)之開關零電壓切換分析 64 2.8 “加相移控制”工作模式c'(+)與理論分析 65 2.8.1 工作模式c'(+)之工作原理 67 2.8.2 工作模式c'(+)之功率傳輸能力 71 2.8.3 工作模式c'(+)之開關零電壓切換分析 72 2.9 柔性切換技術 73 2.10 PPS電流饋入推挽式轉換器特性分析 75 2.10.1 功率傳輸能力分析 76 2.10.2 PPS控制之變壓器漏感電流分析 77 2.10.3 PPS控制之循環電流分析 79 2.11 理想與非理想條件對系統特性的影響 80 2.11.1 開關寄生電容Coss及死區時間的影響 81 2.11.2 開關達ZVS切換的控制方法 83 2.12 電流饋入推挽式轉換器電流分析 86 2.12.1 推挽式轉換器主開關電流驗證 86 2.12.2 主動箝位電路開關電流驗證 89 2.12.3 全橋電路開關電流驗證 91 2.12.4 變壓器漏感電流分析與比較 94 2.12.5 加入開關責任週期的功率傳輸方程式 96 3 第三章 混合儲能系統之數位化與能量管理策略 98 3.1 數位控制之必要性 98 3.2 數位控制器dsPIC33FJ16GS606之介紹 100 3.3 電動車負載特性 101 3.4 現有混合儲能系統能量管理策略分類 103 3.4.1 最佳化控制策略 103 3.4.2 頻域設計控制策略 103 3.4.3 Rule-based控制策略 104 3.5 本文所提出之能量管理策略 106 3.5.1 混合儲能系統雙向轉換器之工作模式分類 107 3.5.2 電池等效模型 108 3.5.3 超級電容等效模型 110 3.5.4 負載瞬間功率及平均功率估測 111 3.5.5 Rule-based控制策略與磁滯控制策略 115 3.6 混合儲能系統之控制流程 120 3.7 雙向電流饋入推挽式轉換器控制流程圖 122 4 第四章 系統規格及設計考量 125 4.1 混合儲能系統之相關規格 125 4.2 電池及超級電容規格選擇 126 4.3 混合儲能系統能量管理策略之實現 129 4.3.1 電池及超級電容模型 129 4.3.2 負載功率估測之實現 132 4.3.3 Rule-based控制策略及磁滯控制策略之實現 133 4.4 電流饋入推挽式轉換器之設計 134 4.4.1 開關責任週期之估計 135 4.4.2 電流饋入電感之設計 135 4.4.3 變壓器之設計 138 4.5 基於本文所提之Duty控制之轉換器特性 142 4.5.1 功率傳輸能力曲線範圍 142 4.5.2 推挽式電路主開關之ZVS驗證 143 4.5.3 主動箝位電路開關之ZVS驗證 144 4.5.4 全橋電路開關之ZVS驗證 145 4.5.5 PPS控制特性圖 146 4.6 電流饋入推挽式轉換器之內迴圈控制器設計 149 5 第五章 電路模擬與實測結果 152 5.1 系統規格與測試設備 152 5.2 電流饋入推挽式轉換器之模擬建立 154 5.3 電流饋入推挽式轉換器開關之ZVS切換模擬及實測驗證 158 5.3.1 開關S1、S2 不完全ZVS切換臨界點模擬 159 5.3.2 開關S5~S8 不完全ZVS切換臨界點模擬 162 5.3.3 開關S5~S8 硬式切換臨界點模擬 165 5.3.4 開關S1、S2 不完全ZVS切換臨界點實測 169 5.3.5 開關S5~S8 不完全ZVS切換臨界點實測 172 5.3.6 開關S5~S8 硬式切換臨界點實測 175 5.4 雙向電流饋入推挽式轉換器之效率量測 179 5.5 混合儲能系統之模擬與實測 180 5.5.1 負載功率估測之模擬驗證 181 5.5.2 混合儲能系統之能量管理策略閉迴路模擬 183 5.5.3 混合儲能系統實測 185 6 第六章 結論與未來展望 188 6.1 結論 188 6.2 未來展望 189

[1] K. T. Chau , C. C. Chan, "Emerging Energy-Efficient Technologies for Hybrid Electric Vehicles," Proc. IEEE, vol. 95, no. 4, pp. 821 - 835, 2007.
[2] Mathewaneke, "Energy Storage Technologies and Real Life Applications – A State of The Art Review," Applied Energy, vol. 179, pp. 350-377, October 2016.
[3] E. Heymann, "CO2 Emission Limit Values for Passenger Cars : EU Proposals Overshoot The Mark," Deutsche Bank AG, Deutsche Bank Research, Frankfurt am Main, Germany, 2018.
[4] S. F. Tie, C. W. Tan, "A Review of Energy Sources and Energy Management System in Electric Vehicles," Renewable and Sustainable Energy Reviews, vol. 20, pp. 82-102, 2013.
[5] M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, vol. 69, 2017.
[6] R. X. F. S. Shuo Zhang, "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, vol. 185, pp. 1654-1662, 2017.
[7] Hajer Marzougui, Mansour Amari, Ameni Kadri, Faouzi Bacha,, "Energy management of fuel cell/ battery/ultracapacitor in electrical hybrid vehicle," sciencedirect, vol. 42, pp. 8857-8869, 2017.
[8] N. Bizon, "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, vol. 229, pp. 459-473, 2018.
[9] Zunyan Hu, Jianqiu Li, Liangfei Xu, Ziyou Song, Chuan Fang, Minggao Ouyang, Guowei Dou, Gaihong Kou, "Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles," Energy Conversion and Management, vol. 129, pp. 108-121, 2016.
[10] Amari Mansour, Bacha Faouzi, Ghouili Jamel, Elgharbi Ismahen, "Design and analysis of a high frequency DC-DC converters for fuel cell and super-capacitor used in electrical vehicle," sciverse sciencedirect, vol. 39, pp. 1580-1592, 2014.
[11] Majid Zandi, Alireza Payman, Jean-Philippe Martin, Serge Pierfederici, Bernard Davat, Farid Meibody-Tabar, "Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications," IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 433-443, 2011.
[12] Phatiphat Thounthong, Viboon Chunkag, Panarit Sethakul, Bernard Davat, Melika Hinaje, "Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device," IEEE Transactions on Vehicular Technology, vol. 59, no. 8, pp. 3892-3904, 2009.
[13] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, "Energy Storage Systems for Automotive Applications," IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2258-2267, 2008.
[14] Rudolph G Jungst, Ganesan Nagasubramanian, Herbert L Case, Bor Yann Liaw, Angel Urbina, Thomas L Paez, Daniel H Doughty,, "Accelerated calendar and pulse life analysis of lithium-ion cells," Journal of Power Sources, vol. 119–121, pp. 870-873, 2003.
[15] Sven De Breucker, Kristof Engelen, Reinhilde d’hulst and Johan Driesen, “Impact of Current Ripple on Li-ion Battery Ageing,” EVS27, pp. 17-20, 2013.
[16] Kotub Uddin, Andrew D. Moore, Anup Barai, James Marco, "The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance," Applied Energy, vol. 178, pp. 142-154, 2016.
[17] Kotub Uddina, Limhi Somerville, Anup Barai, Michael Lain, T.R. Ashwin, Paul Jennings, James Marco, "The impact of high-frequency-high-current perturbations on formation at the negative electrode-electrolyte interface," Electrochimica Acta, vol. 233, pp. 1-12, 2017.
[18] Salman Hajiaghasi, Ahmad Salemnia, Mohsen Hamzeh, "Hybrid energy storage system for microgrids applications: A review," Journal of Energy Storage, vol. 21, pp. 543-570, 2019.
[19] J.P. Zheng ; T.R. Jow ; M.S. Ding, "Hybrid power sources for pulsed current applications," IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 1, pp. 288 - 292, 2001.
[20] Tao Ma, Hongxing Yang, Lin Lu, "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, vol. 153, 2015.
[21] Noshin Omar, Joeri Van Mierlo, Bavo Verbrugge, Peter Van den Bossche, "Power and life enhancement of battery-electrical double layer capacitor for hybrid electric and charge-depleting plug-in vehicle applications," Electrochimica Acta, vol. 55, p. 7524–7531, 2015.
[22] Bin Wang, Jun Xu, Dan Xu, Zhen Yan, "Implementation of an estimator-based adaptive sliding mode control strategy for a boost converter based battery/supercapacitor hybrid energy storage system in electric vehicles," Energy Conversion and Management, vol. 151, pp. 562-572, 2017.
[23] Bin Wang, Jun Xu, Binggang Cao, Xuan Zhou, "A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles," Journal of Power Sources, vol. 281, pp. 432-443, 2015.
[24] Federico Martin Ibanez, Ane Miren Beizama Florez, Sebastián Gutiérrez, Jose Martín, "Extending the Autonomy of a Battery for Electric Motorcycles," IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3294-3305, 2019.
[25] A. Kuperman, I. Aharon, S. Malki, A. Kara, "Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source," IEEE Transactions on Power Electrionics, vol. 28, no. 2, pp. 806-815, 2013.
[26] Jian Cao, Ali Emadi, "A New Battery/ultracapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles," IEEE Transactions on Power Electronics, vol. 27, pp. 122-132, 2012.
[27] Serkan Dusmez, Amin Hasanzadeh, Alireza Khaligh,, "Comparative Analysis of Bidirectional Three-Level DC–DC Converter for Automotive Applications," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3305-3315, 2015.
[28] Lia Kouchachvili, Wahiba Yaïci, Evgueniy Entchev, "Hybrid battery/supercapacitor energy storage system for the electric vehicles," Journal of Power Sources, vol. 374, pp. 237-248, 2018.
[29] Fang Z. Peng, Hui Li, Gui-Jia Su, Jack S. Lawler, "A New ZVS Bidirectional DC–DC Converter for Fuel Cell and Battery Application," IEEE Transactions on Power Electronics, vol. 19, pp. 54-65, 2004.
[30] B. Wang, J. Xu, R. Wai and B. Cao, "Adaptive Sliding-Mode With Hysteresis Control Strategy for Simple Multimode Hybrid Energy Storage System in Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1404-1414, 2017.
[31] Ziyou Song, Heath Hofmann, Jianqiu Li, Xuebing Han, Minggao Ouyang, "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, vol. 139, pp. 151-162, 2015.
[32] Hao Chen and A. K. S. Bhat, "Analysis and design of a dual-bridge series resonant DC-to-DC converter for capacitor semi-active battery-ultracapacitor hybrid storage system," in Conf. Rec. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, 2014.
[33] Hongwen He, Rui Xiong, Kai Zhao, Zhentong Liu, "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, vol. 112, pp. 1311-1317, 2013.
[34] Ziyou Song, Heath Hofmann, Jianqiu Li, Jun Hou, Xuebing Han, Minggao Ouyang, "Energy management strategies comparison for electric vehicles with hybrid energy storage system," Applied Energy, vol. 134, p. 654664, 2014.
[35] Q. Zhang and G. Li, "Experimental Study on A Semi-active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 1014-1021, 2020.
[36] Ziyou Songb, Jun Hou, Shaobing Xu, Minggao Ouyang, Jianqiu Li, "The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses," Energy, vol. 135, pp. 91-100, 2017.
[37] Hyunjae Yoo, Seung-Ki Sul,Yongho Park, Jongchan Jeong, "System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries," IEEE Transactions on Industry Applications, vol. 44, no. 1, pp. 108-114, 2008.
[38] M. ARAZI, A. PAYMAN, M. B. CAMARA and B. DAKYO, "Control of isolated DC/DC resonant converters for energy sharing between battery and supercapacitors," in Conf. Rec. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, 2018.
[39] Y. Eren, O. Erdinc, H. Gorgun, M. Uzunoglu, B. Vural, "A Fuzzy Logic Based Supervisory Controller for An FC/UC Hybrid Vehicular Power System," sciencedirect, vol. 34, pp. 8681-8694, 2009.
[40] Zhe Zhang, Ziwei Ouyang, Ole C. Thomsen, and Michael A. E. Andersen, "Analysis and Design of a Bidirectional Isolated DC–DC Converter for Fuel Cells and Supercapacitors Hybrid System," IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 848-859, 2012.
[41] Zhihui Ding, Chen Yang, Zhao Zhang, Cheng Wang, and Shaojun Xie, "A Novel Soft-Switching Multiport Bidirectional DC–DC Converter for Hybrid Energy Storage System," IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1595-1609, 2014.
[42] YIFENG WANG, FUQIANG HAN, LIANG YANG, RONG XU, AND RUIXIN LIU, "A Three-Port Bidirectional Multi-Element Resonant Converter With Decoupled Power Flow Management for Hybrid Energy Storage Systems," IEEE Access, vol. 6, pp. 61331-61341, 2018.
[43] J. You, W. Fan, R. Sun and B. Fu, "Modeling, Analysis, and Control of an Integrated Hybrid Energy Storage System," IEEE Access, vol. 7, pp. 48129-48137, 2019.
[44] P. Wang, X. Lu, W. Wang and D. Xu, "Frequency Division Based Coordinated Control of Three-Port Converter Interfaced Hybrid Energy Storage Systems in Autonomous DC Microgrids," IEEE Access, vol. 6, pp. 25389-25398, 2018.
[45] Kotub Uddin, Andrew D. Moore, Anup Barai, James Marco, "The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance," Applied Energy, vol. 178, pp. 142-154, 2016.
[46] Shouxiang Li, Kang Xiangli, Keyue Ma Smedley, "A Control Map for a Bidirectional PWM Plus Phase-Shift-Modulated Push–Pull DC–DC Converter," IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8514-8524, 2017.
[47] H. Xiao and S. Xie, "A ZVS Bidirectional DC–DC Converter With Phase-Shift Plus PWM Control Scheme," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 813-823, 2008.
[48] B. Zhao, Q. Yu and W. Sun, "Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4667-4680, 2012.
[49] X. Liu et al., "Novel Dual-Phase-Shift Control With Bidirectional Inner Phase Shifts for a Dual-Active-Bridge Converter Having Low Surge Current and Stable Power Control," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4095-4106, 2017.
[50] K. Xiangli, S. Li and K. M. Smedley, "Decoupled PWM Plus Phase-Shift Control for a Dual-Half-Bridge Bidirectional DC–DC Converter," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7203-7213, 2018.
[51] W. Li, H. Wu, H. Yu and X. He, "Isolated Winding-Coupled Bidirectional ZVS Converter With PWM Plus Phase-Shift (PPS) Control Strategy," IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3560-3570, 2011.
[52] T. J. Barlow, S. Latham, I. S. Mccrae and P. G. Boulter, "A Reference Book of Driving Cycles for Use in The Measurement of Road Vehicle Emissions", Berkshire: IHS Markit, 2009.
[53] X. Lu, Y. Chen, M. Fu and H. Wang, "Multi-Objective Optimization-Based Real-Time Control Strategy for Battery/Ultracapacitor Hybrid Energy Management Systems," IEEE Access, vol. 7, pp. 11640-11650, 2019.
[54] Ziyou Song, Jianqiu Li, Xuebing Han, Liangfei Xu, Languang Lu, Minggao Ouyang, Heath Hofmann, "multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, vol. 135, pp. 212-224, 2014.
[55] 陳冠中, “具電量回收之可攜式在線電池診斷平台,” 國立台灣科技大學電機工程系碩士學位論文, 民國一百零八年七月.
[56] O. Tremblay, L.-A. Dessaint, "Experimental Validation of a Battery Dynamic Model for EV Applications," World Electr. Veh. J, vol. 3, pp. 289-298, 2009.
[57] 柯俊宏, “具數位控制之超級電容Reflex充電器,” 國立台灣科技大學電機工程研究所碩士論文, 民國一百零八年七月.
[58] R. P. Wojda and M. K. Kazimierczuk, "Winding Resistance and Power Loss of Inductors With Litz and Solid-Round Wires," IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3548-3557, 2018.

無法下載圖示 全文公開日期 2025/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE