簡易檢索 / 詳目顯示

研究生: 楊竣同
Jyun-Tong Yang
論文名稱: 二次浸鍍時間對熱浸鋅鋁鎂鍍層組織及耐蝕性之作用
The Effect of Secondary Dipping Time on the Microstructure and Corrosion Resistance of Two-Step-Hot-Dip Zn-Al-Mg
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 王宜達
Yi-Ta Wang
鄭偉鈞
Wei-Chun Cheng
梁煥昌
Huan-Chang Luiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 194
中文關鍵詞: 二次熱浸鍍鋅鋁鎂二次熱浸鍍鋅鋁鎂時間
外文關鍵詞: Secondary hot dip Zn-Al-Mg, Secondary hot dip Zn-Al-Mg time
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIX 第一章 前言 1 第二章 文獻回顧 3 2.1 熱浸鍍鋅 3 2.1.1 熱浸鍍鋅的原理與應用 3 2.1.2 連續式熱浸鍍鋅製程 4 2.1.3 批次式熱浸鍍鋅製程 5 2.1.4 熱浸鍍鋅的形貌組織 6 2.1.5 熱浸鍍鋅防蝕機制 10 2.2 熱浸鍍鋅鋁鎂 13 2.2.1 鋁添加對熱浸鍍鋅的形貌組織影響 16 2.2.2 鎂添加對熱浸鍍鋅的形貌組織影響 20 2.2.3 鎂添加對熱浸鍍鋅鋁的形貌組織影響 22 2.2.4 鋅鋁鎂鍍層之防蝕機制 26 2.3 二階段熱浸鍍鋅鋁鎂 30 2.4 影響熱浸鍍形貌厚度之參數 32 2.4.1 熱浸時間的影響 32 2.4.1.1 一次熱浸鍍鋅時間對二次熱浸鍍層的影響 34 2.4.1.2 二次熱浸鍍鋅鋁鎂時間的影響 36 2.4.2 熱浸溫度的影響 39 2.4.3 試片移出金屬液之速率的影響 44 2.4.4 冷卻方式的影響 45 2.5 鹽霧試驗 46 2.5.1 循環試驗方法-IEC 60068-2-52 49 2.5.2 試驗結果評估 51 2.6 田口方法 52 2.6.1 品質特性分類及SN ration 53 2.6.2 製程控制因子之效應分析及最佳化 55 2.6.3 確認實驗 57 2.6.4 田口氏對品質工程之貢獻 58 第三章 實驗方法 60 3.1 實驗計畫 60 3.2 實驗器具 62 3.3 二階段熱浸製程 65 3.3.1 鋅鋁鎂鍍浴製備 65 3.3.2 試片製備 65 3.3.3 前處理 66 3.3.4 助熔處理 67 3.3.5 二階段熱浸鍍鋅鋁鎂 68 3.4 實驗步驟 70 3.4.1 田口實驗設計 70 3.4.2 二階段熱浸參數設計 70 3.4.3 二階段熱浸製程方案安排 73 3.4.4 田口氏品質特性 75 3.4.5 試片厚度量測 76 3.4.6 確認實驗(Confirmation Run) 77 3.5 鹽霧試驗 77 3.6 分析設備 80 3.7 二階段熱浸製程後各層之稱呼定義 81 第四章 田口法熱浸鍍實驗 83 4.1 田口式二階段熱浸製程實驗 83 4.1.1 熱浸製程試片厚度之SN比值計算 83 4.1.2 製程參數對鍍層厚度之影響性分析 85 4.1.3 製程最佳化與預估 92 4.2 確認實驗 94 第五章 結果與討論 96 5.1 不同二次熱浸鍍鋅鋁鎂時間之實驗結果 96 5.1.1 Alpha外鋅鋁鎂層 103 5.1.2 Beta枝狀鐵鋁層 108 5.1.3 Theta鋅鋁鐵層 114 5.1.4 Omega內鋅鋁鎂層 120 5.1.5 Pi鐵鋁鋅抑制層 123 5.1.6 不同熱浸時間對鍍層之影響性 126 5.1.7 二階段熱浸鍍鋅鋁鎂相形成 128 5.2 鹽霧試驗 131 5.2.1 初始腐蝕階段 140 5.2.2 中期腐蝕階段 142 5.2.3 後期腐蝕階段 144 5.3不同二次熱浸鍍時間之鹽霧試驗結果 146 第六章 結論 153 第七章 未來研究方向 156 參考文獻 157 附錄 168

    [1] World Steel Association, "World steel production" Nov 2015.
    [2] G. H. Koch, M. P. H. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, "Corrosion costs and preventive strategies in the united states", Publication No.Fhwa - Rd - 01 - 156.
    [3] W. I. Feng, "Anti - Corrosion mechanism and service life of hot dip galvanizing", Journal of Chinese Corrosion Engineering (1995),
    p.53-72.
    [4] S. Schuez, M. Fleischanderl, G. H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A. C. Kneissl, "Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment", Corrosion Science 51 (2009), p.2355-2363.
    [5] M. Dutta, A. K. Halder, and S. B. Singh, "Morphology and properties of hot dip Zn-Mg and Zn-Mg-Al alloy coatings on steel sheet", Surface and Coatings Technology 205(2010), p.2578-2584.
    [6] T. Prosek, D. Persson, J. Stoulil, and D. Thierrya, "Composition of corrosion products formed on Zn–Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions", Corrosion Science86 (2014), p.231-238.
    [7] 施聰智、王朝正,"鋁鎂添加與鍍浴溫度對熱浸鍍鋅低碳鋼鍍層形貌與耐蝕性之影響",國立台灣科技大學機械工程系碩士論文,2021年,第53 ~ 66頁。
    [8] 高野嘉彥、坂井一樹, "二浴法によるZn-A1合金めっきにおける浴管理方法", 公開特許公報 (2007), JP2007 - 321214.
    [9] 蔡文達,"陰極防蝕電化學應用基本原理",防蝕工程第二卷第一期,民國77年,第3頁。
    [10] F. Ozturk, Z. Evis, and S. Kilic, "Hot - Dip galvanizing process", Comprehensive Materials Finishing (2017), p.178-190.
    [11] E. D. A. Alvarenga and V. F. C. Lins, "Atmospheric corrosion evaluation of electrogalvanized, Hot-Dip Galvanized and galvannealed interstitial free steels using accelerated field and cyclic tests", Surface and Coating Technology, 306(2016), p.428-438.
    [12] A. Khosravi, A. Halvaee, and M. H. Hasanniac, "Weldability of electrogalvanized versus galvanized interstitial free steel sheets by resistance seam welding", Materials & Design, 44(2013), p.90-8.
    [13] 中華民國熱浸鍍鋅協會,"2020年度熱浸鍍鋅產量統計表"。
    [14] 連續式熱浸鍍鋅流程示意圖,參考來源:http://www.sutorcn.co-m/en/product.php?id=4,2018年,©Sutor.
    [15] 批次式熱浸鍍鋅流程示意圖,參考來源:https://workshop-insider.com/guide-to-galvanizing/, Galvanizing Process.
    [16] E. Toklu, M. Gur, and M. Celtik, "Investigation on effects of steel surface properties on galvanization behavior", Journal of Engineering Research and Applied Science, (2018), p.861-868.
    [17] A. R. Marder, "The Metallurgy of zinc-coated steel", Progress in
    Materials Science 45, (2000), p.191-271.
    [18] K. Han, I. Lee, I. Ohnuma and R. Kainuma, "Formation and growth behavior of intermetallic compound phases in the interfacial reaction of solid Fe / liquid Zn at 450 °C", Journal of Alloys and compounds 888, (2021) 161562.
    [19] Bhawna Chugh, "Chapter 12 - Corrosion inhibition by aluminum
    oxide", Inorganic Anticorrosive Materials, (2022), p.231-249.
    [20] 陳鴻賓,"不銹鋼的耐腐蝕性",防蝕工程,第六卷第一期,民國81年3月,第44 ~ 60頁。
    [21] "Handbook of Chemistry and Physics", The Chemical Rubber Co., (1975), Cleveland, Ohio.
    [22] W. Liu, M. C. Li and Q. Luo, "Influence of alloyed magnesium on the microstructure and long-term corrosion behavior of hot-dip Al-Zn-Si coating in NaCl solution", Corrosion Science 104 (2016), p.217-226.
    [23] A. R. B Verma and W.J Ooij, "High-temperature batch hot-dip galvanizing. Part 2. Comparison of coatings formed in the temperature range 520-555°C", Surface and Coatings Technology 89 (1997), p.143-150.
    [24] H. H. Lee and D. Hiam, "Corrosion" NACE Publication (1989),
    p.852-856.
    [25] A. P. Yadav, H. Katayama, K. Noda, and H. Masuda, "Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments", Corrosion Science (2007), p.3716-3731.
    [26] K. Osinski, "The influence of aluminum and silicon on the reaction between iron and zinc", Doctoral Thesis, Technical University, 1983, Eindhoven.
    [27] K. Bouche, F. Barbier, and Coulet, "Intermetallic compound layer growth between solid iron and molten aluminium", Materals Science and Engineering:A, 249 (1998), p.167-175.
    [28] J. H. Selverian, M. R. Notis, and A. R. Marder, "The microstructure of 55 w/o Al-Zn-Si (Galvalume) hot dip coatings", Journal of Materials Engineering, 9 (1987), p.133-140.
    [29] W. J. Cheng and C. J. Wang, "Growth of intermetallic layer in the aluminide mild steel during hot-dipping", Surface and Coatings Technology, 204 (2009), p.824-828.
    [30] J. H. Selverian, A. R. Marder, and M. R. Notis, "The reaction between solid iron and liquid Al-Zn baths", Metallurgical Transactions A, 19 (1988), p.1193-1203.
    [31] H. F. Li, J. S. Zheng and D. Y. Yu, "Tensile properties and corrosion resistance of hot-dip 55%Al-Zn alloy coating steel", Materials Mechamical Engineering, 26 (2002), p.25-28.
    [32] M. Zhao, Y. Cai, and F. Yin, "Effect and controlling mechanism of vanadium on Fe-Al interface reaction in Al-Zn bath", Surface and Coatings Technology, 306 (2016), p.408-417.
    [33] Y. L. Chen, Y. Liu, and H. Tu, "Effect of Ti on the growth of the Fe-Al layer in a hot dipped Zn-6Al-3Mg coating", Surface and Coatings Technology, 275 (2015), p.90-97.
    [34] F. García, A. Salinas, and E. Nava, "The role of Si and Ti additions on the formation of the alloy layer at the interface of hot-dip Al-Zn coatings on steel strips", Materials Letters, 60 (2006), p.775-778.
    [35] G. Wu, J. Zhang, and Y. Ren, "Investigation of Ti addition effects on the thickness of 55 pct Al-Zn-1.6 pct Si coating by first-principles calculation", Materials Letters, 43 (2012), p.2012-2017.
    [36] H. Peng, X. Su, and Z. Li, "Synergistic effect of Cu and Si on hot-dipping galvalume coating", Surface and Coatings Technology, 206 (2012), p.4329-4334.
    [37] J. H. Selverian, A. R. Marder, and M. R. Notis, "The effects of silicon on the reaction between solid iron and liquid 55 wt pct Al−Zn baths", Metallurgical Transactions A, 20 (1989), p.543-555.
    [38] Y. Xie, A. Du, X. Zhao, R Ma, Y. Fan, and X. Cao, "Effect of Mg on Fe-Al interface structure of hot–dip galvanized Zn-Al-Mg alloy coatings", Surface and Coatings Technology, 337 (2018), p.313-320.
    [39] C. Yao, Z. Wang, S. L. Tay, and W. Gao, "Effects of Mg on morphologies and properties of hot dipped Zn-Mg coatings", Surface & Coatings Technology 260 (2014), p.39-45.
    [40] E. Diler, S. Rioual, and B. Lescop, "Chemistry of corrosion products of Zn and Mg-Zn pure phases under atmospheric conditions", Corrosion Science 65 (2012), p.178-186.
    [41] T. Prosek, N. Larché, and M. Vlot, "Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications", Material and Corrosion 61 (2010), p.412-420.
    [42] S. Schuerz, M. Fleischanderl, and G. H. Luckeneder, "Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment", Corrosion Science 51 (2009), p.2355-2363.
    [43] W. Köster and T. Gödecke, "Das Dreistoffsystem Eisen-Aluminum-Zink", Z Metallkde 61 (1970), p.642.
    [44] M. Urednicek and J. S. Kirkaldy, "Mechanism of iron attack inhibition arising from additions of aluminum to liquid Zn(Fe) during galvanizing", Z Metallkde 64 (1987), p.649.
    [45] N. Tang and G. R. Adams, "Studies on the inhibition of alloy formation in hot-dip galvanized coatings. In: Marder AR, editor", The Physical Metallurgy of Zinc Coated Steel, Warrendale, PA:TMS. 1994. p.41.
    [46] A. R. P. Ghuman and J. I. Goldstein, "Reaction mechanisms for the coatings formed during hot dipping of iron in 0 to 10 Pct Al-Zn baths at 450 ~ 700°C", Metallurgical Transactions ,2A(1971), p.2903.
    [47] C. E. Jordan and A. R. Marder, "Effect of phosphorous surface segregation on iron–zinc reaction kineticsduring hot-dip galvanizing", Metallurgical and Materials Transactions", 28A(1997), p.2695.
    [48] P. G. Caceres, C. A. Hotham, J. A. Spittle, and R. D. Jones, "Mechanisms of formation and growth of intermetallic layers during hot dipping of iron in Zn-3Al and Zn-6Al baths", Materials Science and Technology 2(1986), p.871.
    [49] S. J. Makimattila, "On the production possibilities of a deep drawing quality Zn-5% Al coated steel sheet", Scan J Metall 15 (1986), p.224.
    [50] Z. W. Chen, J. T. Gregory, and R. M. Sharp, "Intermetallic phases formed during hot dipping of low carbon steel in a Zn-5%Al melt at 450°C", Metallurgical Transactions 23A(1992), p.2393.
    [51] J. M. Byun, J. M. Yu, D. K. Kim, T. Y. Kim, W. S. Jung, and Y. D. Kim, "Corrosion behavior of Mg2Zn11 and MgZn2 single phases ", Korean J. Met. Mater. 51 (2013), p.413-419.
    [52] T. Prosek, A. Nazarov, U. Bexell, and D. Thierry, "Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions", Corrosion Science 50 (2008), p.2216-2231.
    [53] C. Yao, S. L. Tay, T. Zhu, H. Shang, and W. Gao, "Effects of Mg contents on microstructure and electrochemical properties of Zn-Al-Mg alloys", Journal of Alloys and Compounds 645 (2015), p.131-136.
    [54] P. Liang, T. Tarfa, J. A Robinson, S. Wagner, P. Ochin, M. GHarmelin, H. J. Seifert, H. L. Lukas, and F. Aldinger, "Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system", Thermochimica Acta 314 (1998), p.87-110.
    [55] C. Commend and J. Pühringer, "Microstructural characterization and quantification of Zn-Al-Mg surface coatings", Materials Characterization 61(2010), p.943-951.
    [56] Y. Meng, G. Jiang, X. Ju, and J. hao, "TEM study on the microstructure of the Zn-Al-Mg alloy", Materials Characterization 129 (2017), p.336-343.
    [57] M. Dutta, A. Kumar Halder, and S. Brat Singh, "Morphology and properties of hot dip Zn-Mg and Zn-Mg-Al alloy coating on steel sheet", Surface and coatings technology 205 (2010), p.2578-2584.
    [58] M. Salgueiro, C. Allély, K. Ogle, and P. Volovitch, "Corrosion mechanisms of Zn(Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes", Corrosion Science 90(2015), p.482-490.
    [59] D. Thierry, D. Persson, G. Luckeneder and K. Stellnberger, "Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites", Corrosion Science 148 (2019), p.338-p354.
    [60] R. Hausbrand, M. Rohwerder, M. Stratmann, C. Schowerdt, B. Schumacher, and G. Grundmeier, "Galvatech'01 Brussels, Belgium",
    (2001), p.161.
    [61] T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, "Galvatech'07, Osaka, Japan", (2007), p.592.
    [62] R. Hausbrand, M. Stratmann, and M. Rohwerder, "Corrosion of zinc-magnesium coatings: Mechanism of paint delamination", Corrosion Science51 9 (2009), p.2107-2114.
    [63] P. Volovitch, T. N. Vu, C. Allély, and K. Ogle, "Understanding corrosion via corrosion product characterization: II. role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel", Corrosion Science 53(2011), p.2437-2445.
    [64] D. Persson, D. Thierry, N. LeBozec, and T. Prosek, "In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel", Corrosion Science 72(2013), p.54-63.
    [65] N. C. Hosking, M. A. Strom, P. H. Shipway, and C. D. Rudd, "Corrosion resistance of zinc–magnesium coated steel", Corrosion Science 49(2007), p.3669-3695.
    [66] P. Volovitch, C. Allely, and K. Ogle, "Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn-Mg coating on steel", Corrosion Science 51 (2009), p.1251-1262.
    [67] T Liu, R Ma, Y Fan, A Du , X Zhao , M Wen, and X Cao, "Effect of fluxes on wettability between the molten Galfan alloy and Q235 steel matrix", Surface & Coatings Technology 337(2018), p.270-278.
    [68] S. Marioal and K. Henry, "Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath", MDPI Materials, 14(2021):1259.
    [69] L Gao, Z Li, X. Kuang, F Yin, and H. Ji, "Formation of periodic layered structure during hot-dip galvanizing in Al-Zn-Mg bath", Surface & Coatings Technology, 304(2016), p.306-315.
    [70] 高子崴、王朝正,"低碳鋼複合式熱浸鍍 Zn-Al-Mg 之微觀結構及耐蝕性研究",國立台灣科技大學機械工程系碩士論文,2021年,第43 ~ 54、64 ~ 70頁。
    [71] C. E. Jordan and A. R. Marder, "Effect of substrate grain size on iron-zinc reaction kinetics during Hot-Dip galvanizing" Metallurgical and Materials Transactions A, 28(1997), p.2683-2694.
    [72] B. Kewu and W. Ping, "Assessment of the Zn-Fe-Al system for kinetic study of galvanizing", Journal of Alloys and Compounds 347, Issues 1-2 (2002), p.156-164.
    [73] Y. Wakamatsu, K. Samura, and M. Onishi, "Fe-Zn 系におけるδ1相の拡散係数", Jpn.Inst.Met 41(1977), p.664.
    [74] M. Onishi, Y. Wakamatsu, and T. Ssak, "Fe-Zn 拡散対における金属問化合物相の形成について", Jpn.Inst.Met 37(1973), p.724-731.
    [75] T. shimozaki, M. Onishi, and Y. Wakamatsu, "Beginning time of Formation of new phase in Fe-Zn Diffusion couple during non-isothermal diffusion and numerical analysis for the phase growth behavior", ISIJ Int 33 (1993), p.1003-1010.
    [76] M. Onishi, Y. Wakamatsu, and H. Miura, "Formation and growth kinetics of intermediate phases in Fe-Zn diffusion couples", Trans.Jpn.Inst.Met 15 (1974), p.331.
    [77] D. M. Dovey and A. Waluskit, "Continuous dip aluminising of steel", Metallurgia (1963), p.211-217.
    [78] A. Hrbek, "The effect of speed on the thickness of the coating produced during metallizing in liquid metals", Metal Finishing Journal (1961), p.298-302.
    [79] D. Liu, "Density and viscosity of molten Zn-Al alloys", Metallurgical and Materials Transactions A 37(2006), p.2767-2771.
    [80] J. Mendala, "Influence of the cooling method on the structure of 55AlZn coatings", IOP Conference Series: Materials Science and Engineering 22(2011), 012004.
    [81] F. Altmayer, "Critical aspects of the salt sprat test", Plating Surface Fin. 72.9(1985), p.36-40.
    [82] INTERNATIONAL STANDARD IEC60068-2-52 Edition 3.0, "Environmental testing - Part 2-52:Tests-Test Kb:Salt mist, cyclic sodium chloride solution", (2017).
    [83] 氧濃差腐蝕電池(Oxygen-concentration cell corrosion)示意圖,參考來源:https://www.machinerylubrication.com/Read/29116/inhib-iting-rustcorrosion, Machinery Lubrication (2012).
    [84] Y. Abbas, F. pargar, D. A. Koleva, K. V. Breugel, W. Olthuis and A. V. D. Berg, "Non-destructive measurement of chloride ions concentration in concrete - A comparative analysis of limitations and prospects", Construction and Building Materials 174 (2018), p.376-387.
    [85] 中華民國太陽光電發電系統商業同業公會,"太陽光電發電系統支撐架規範",2011年,第1 ~ 10頁。
    [86] 中華民國國家標準CNS 15200-8-3,"塗料一般試驗法-第8-3部:塗層劣化評估-銹蝕等級",2013年,第4頁。
    [87] D. C. Montgomery, "Design and Analysis of Experiments", John Wiley & Sons INC.3rd Ed (1991).
    [88] Peace and Glan Stuart, "TAGUCHI METHODS A Hands-on Approach", Addision-Wesley (1993).

    無法下載圖示 全文公開日期 2027/08/16 (校內網路)
    全文公開日期 2027/08/16 (校外網路)
    全文公開日期 2027/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE