簡易檢索 / 詳目顯示

研究生: 吳奕諼
Yi-syuan Wu
論文名稱: 碲化鉍合金熱電薄膜發電器之設計與製造
Design and fabrication of bismuth-telluride-based alloy thin film thermoelectric generators
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 李維楨
Wei-chen Lee
張瑞慶
Rwei-Ching Chang
蕭俊卿
Chun-Ching Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 碲化鉍薄膜熱電發電器熱蒸鍍
外文關鍵詞: bismuth-telluride-based alloy thin films, thermoelectric generators, thermal evaporation
相關次數: 點閱:223下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

熱電薄膜發電器乃利用熱電效應,將溫度差轉為電能輸出。熱電薄膜發電器主要用微機電製程,利用熱蒸鍍沉積熱電薄膜並以濺鍍沉積鋁橋。量測方式以溫控式加熱器給予熱源,經由Agilent 34970A資料蒐集交換器來讀取輸出的電壓、電流值和功率。
本文分別使用三種不同基材包括:聚醯亞胺基材(Polyimide, PI)、康寧玻璃7740(Corning Pyrex® 7740 Borosilicate Glass)、具氮化矽薄膜之矽基材做為熱電薄膜發電器的基材。研究結果以PI基材的熱電薄膜發電器具較佳電壓輸出。
以熱蒸鍍沉積碲化鉍熱電薄膜,不同鍍率對於所沉積之熱電薄膜成份有重要的影響,因此經由X光能量散佈光譜儀(EDS)和四點探針面電阻儀之量測與分析找出熱電薄膜較好品質的沉積鍍率。本研究結果由P-type熱電薄膜(鍍率12Å/s)及N-type熱電薄膜(鍍率3Å/s)所製造的熱電薄膜發電器可得到較高的性能。
熱電薄膜發電器之結構設計亦影響其整體性能,本文於直徑為9.3mm面積之範圍內,設計並串聯P-type與N-type熱電薄膜。由研究結果得知,以兩組P-type與N-type串聯之結構設計製作熱電薄膜發電器有較高的輸出電流與功率。而採用四組P-type與N-type串聯之結構設計則有較高的輸出電壓。


The thermoelectric effect of thermoelectric generators is used to convert temperature difference to corresponding electrical power. Thermoelectric generators are fabricated by MEMS process which includes bismuth-telluride-based alloy thin film deposited by thermal evaporation, patterning by photolithography, and aluminum bridge deposited by sputter. The output voltage, current and power of the thin film thermoelectric generators are measured and recorded by Aligent 34970A data collector while a heater with temperature control is applied on hot junction.
The three substrates as polyimide sheet, Corning Pyrex® 7740 borosilicate glass, and silicon nitride thin film on silicon substrate are used to fabricate thermoelectric generators. The output voltage represents a good performance while thermoelectric generators are fabricated on polyimide sheet.
Material compositions are affected while bismuth-telluride-based alloy thin films are deposited by thermal evaporation. EDS (Energy Dispersive Spectrometer) and four-point probe are used to find the optimal deposition rate of bismuth-telluride-based alloy. From the results of current work, P-type bismuth-telluride-based alloy with 12 Å/s and n-type bismuth-telluride-based alloy with 3 Å/s can fabricate a high performance thermoelectric generator.
The output power can also be affected by structure design of thermoelectric generators. P- and n-type legs are series-wound, and fixed on an area with diameter of 9.3mm. From the results of current work, the output current and the power have high performance under p- and n-type legs with two pairs. However, the output voltage has high performance under p- and n-type legs with four pairs.

摘 要----------------------------------------------------------------------I Abstract---------------------------------------------------------------------II 誌 謝--------------------------------------------------------------------III 目 錄---------------------------------------------------------------------IV 圖表索引---------------------------------------------------------------------VI 第一章 緒論----------------------------------------------------------------1 1-1 研究背景與動機------------------------------------------------------1 1-2 文獻回顧------------------------------------------------------------3 1-2-1熱電基本原理相關文獻------------------------------------------------3 1-2-2熱電材料相關文獻----------------------------------------------------4 1-2-3熱電應用性相關研究--------------------------------------------------5 1-3 研究目的------------------------------------------------------------7 第二章 理論介紹-----------------------------------------------------------14 2-1 熱電致冷效能-------------------------------------------------------14 2-2 熱電能源產生器的效能-----------------------------------------------16 2-3 X光能量散佈光譜儀--------------------------------------------------19 2-4 四點探針面電阻儀---------------------------------------------------20 2-4-1 面電阻------------------------------------------------------------21 第三章 熱電薄膜發電器之製作-----------------------------------------------26 3-1 熱電薄膜發電器之設計-----------------------------------------------26 3-2 熱電薄膜發電器之製程步驟-------------------------------------------27 3-3 熱電薄膜發電器之製程參數-------------------------------------------31 3-4 多串聯性之可撓式熱電薄膜發電器設計與製程---------------------------33 第四章 訊號量測與分析-----------------------------------------------------43 4-1 熱電訊號量測設備---------------------------------------------------43 4-2 不同基材之熱電薄膜發電器電訊量測-----------------------------------43 4-3 EDS分析不同鍍率的熱電薄膜材料成份----------------------------------44 4-4 四點探針面電阻儀量測不同鍍率熱電薄膜的面電阻------------------- ----44 4-5 不同鍍率熱電薄膜之席貝克係數量測-----------------------------------45 4-6 不同鍍率組合之熱電薄膜發電器電訊量測-------------------------------45 4-7 不同結構設計之熱電薄膜發電器電訊量測-------------------------------46 第五章 結論----------------------------------------------------------------58 5-1 結論---------------------------------------------------------------58 5-2 未來方向-----------------------------------------------------------59 參考文獻---------------------------------------------------------------------60 作者簡介---------------------------------------------------------------------63

[1]Yao, D. J., “In-plane MEMS thermoelectric microcooler,” Ph.D. dissertation of UCLA, USA (2001).
[2]朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌-熱管理技術專題,220期 (2005)。
[3]Seebeck, T. J., “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265 (1823).
[4]Pollock, D. D., Thermoelectricity: theory, Thermometry, tool, ASTM Special Technical Publication 852, American Society for Testing and Materials, Philadelphia, PA (1985).
[5]Seebeck, T. J., “Uber deen magnetismus der gavenische kette,” Abh. K. Akad. Wiss., Berlin, 289 (1821).
[6]Seebeck, T. J., “Magnetische polarization der metalle und erze durck tempreatur- differenz,” Abh. K. Akad. Wiss., Berlin, 265 (1823).
[7]Thomson, W., “An account of Carnot`s theory of the motive power of heat,” Proc. R. Soc. Edinburgh, 16, 541 (1849).
[8]Thomson, W., “On a mechanical theory of thermo-electric currents,” Philos. Mag., 3, 529 (1852).
[9]Thomson, W., “Account of researches in thermo-electricity,” Philos. Mag., 8, 62 (1854).
[10]Thomson, W., “On the electrodynamic qualities of metals,” Philos. Trans. R. Soc, London, 146, 649 (1856).
[11]施經瑋,「多元合金之熱電性能研究」,碩士論文,國立清華大學材料科學工程研究所,新竹 (2004)。
[12]莊幸蓉,「熱電致冷器與熱電能源產生器之設計與分析」,碩士論文,國立清華大學微機電系統工程研究所,新竹 (2005)。
[13]Rowe, D. M., Gao, M., “Evaluation of thermoelectric modules for power generation,” Journal of Power Sources, 73, 193-198 (1998).
[14]Gao, M., Rowe, D. M. and Volklein, F., “Integrated thin film thermoelectric cooler,” Electronics letters, 34, 222-223 (1998).
[15]Rowe, D. M., Gao, M., “Cooling performance of integrated thermoelectric microcooler,” Solid-State Electronics, 43, 923-929 (1999).
[16]Kim, H., “(Bi,Sb)2,(Te,Se)3-based thin film thermoelectric generators,” Materials Letters, 43, 221–224 (2000).
[17]Silva, L. W., Kaviany, M., “Miniaturized thermoelectric cooler,” International Mechanical Engineering Congress and Exposition, New Orleans, U.S.A., 17–22, 1–15 (2002).
[18]Zou, H., Rowe, D. M., Williams, S. G. K., “Peltier effect in a co-evaporated Sb2Te3(p)-Bi2Te3(n) thin-film thermocouple,” Thin Solid Films, 408, 270 (2002).
[19]Zou, H., Rowe, D. M., Gao, M., “Growth of p- and n-type bismuth telluride thin films by co-evaporation,” Journal of Crystal Growth, 222, 82-87 (2001).
[20]Goncalves, L. M., Couto, C., Alpuim, P., Correia, J. H., “Thermoelectric micro converters for cooling and energy scavenging systems,” Journal of Micromechanics and Microengineering, 18 (2008).
[21]Miyazaki, K., Shirakawa, T., and Tsukamoto, H., “Flash Evaporated Thin Films of Bismuth Telluride,” Thermoelectrics (2006).
[22]Takashiri, M., Shirakawa, T., Miyazaki, K., Tsukamoto, H., “Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method,” Sensors and Actuators A, 138, 329–334 (2007).
[23]Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, K., and Tsukamoto, H., “Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin film deposited by flash evaporation,” Journal of applied physics, 101, 074301 (2007).
[24]Böttner, H., Schubert, A., Schlereth, K. H., Eberhard, D., Gavrikov, A., J¨agle, M., K¨uhner, G., K¨unzel, C., Nurnus, J., Plescher, G., “New thermoelectric components using microsystem technologies,” J. Microelectromech. Syst, 13, 414–420 (2004).
[25]Scherrer, H., Scherrer, S., “Bismuth telluride, antimony telluride, and their solid solutions,” in: D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton (1995).
[26]Goncalves, L. M., Couto, C., Alpuim, P., Rowe, D. M., Correia, J. H., “Thermoelectric microstructures of Bi2Te3 Sb2Te3 for a self-calibrated micro-pyrometer,” Sensors and Actuators A, 130–131 (2006).
[27]Goncalves, L. M., Rocha, J. G., Couto, C., Alpuim, P., Gao, M., Rowe, D. M. and Correia, J. H., “Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies,” J. Micromech. Microeng, 17, S168–S173 (2007).
[28]洪金賢,「軟性材料基板的介紹與應用」,工業材料雜誌,243,159-168 (2007)。
[29]曾國原,「高優質碲化鉍薄膜之電化學沉積技術與微熱電致冷晶片之研發」,碩士論文,國立中山大學電機工程學系,高雄 (2005)。
[30]Nolas, G. S., Sharp, J., Goldsmid, H. J., Thermoelectrics Basic Principles and New Materials Developments, Materials Science, 2-13 (2001).
[31]黃永盛,「科儀新知」,17 期 (1995)。
[32]Fitzgerald, R., Keil, K., Heinrich, K. F. J., “Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis,” Science, 159, 528-530 (1968).
[33]Schroger, D. K., Semiconductor Material and Device Characterization, Wiley, New York (1998).
[34]羅正忠、張鼎張,「半導體製程技術導論」,台灣培生教育出版股份有限公司,台北 (2003)。
[35]張俊彥、施敏,「半導體元件物理與製作技術」,高立,40-44 (1996)。
[36]Mayer J. W. and Lau S. S., Electronic Material Science, Macmillian, 34-35 (1990).
[37]王泳麒,「氧化銦錫經凖分子雷射照射處理之表面特性研究」,碩士論文,逢甲大學電機工程學系碩士班,台中 (2005)。

QR CODE