簡易檢索 / 詳目顯示

研究生: 黃品諭
Pin-yu Huang
論文名稱: 應用於永續能源電能轉換器之新型非電解電容倍壓整流電路
A Novel Voltage Doubler Rectifier with Non-Electrolytic Capacitor for Sustainable Energy Power Converters
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 邱煌仁
Huang-Jen Chiu
黃仲欽
Jong-Chin Hwang
楊宗銘
Chung-Ming Young
林瑞禮
Ray-Lee Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 74
中文關鍵詞: 電流饋入式高電壓增益非電解電容永續能源倍壓電路
外文關鍵詞: current-fed, high voltage gain, non-electrolytic capacitor, sustainable energy power system, voltage doubler
相關次數: 點閱:384下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個應用於永續能源電能轉換器之新型非電解電容的倍壓整流電路,並且將本文所提出的倍壓整流電路分別應用在兩個不同的電流饋入式架構。由於傳統的整流電路必須使用容值較大的電解電容來解決較大的電流漣波,並滿足輸出電壓漣波規格。然而電解電容的壽命隨著電流漣波增大與溫度升高而下降,因此使用電解電容間接限制電能轉換器的壽命。因此,本文提出一個新型倍壓整流電路,藉由相互抵消電容上的電壓漣波機制,得以使用較小容值的電容滿足輸出電壓漣波規格,並且降低流經電容上的電流漣波,得以降低電容上等效串聯電阻的損耗,藉此達到非電解電容的倍壓整流電路。
    本文將傳統的倍壓整流電路與提出的倍壓整流電路應用在電流饋入式架構,分別就電容上的電流與輸出電壓漣波做分析與推導。並且輔以SIMPLIS電路模擬軟體將分析的結果驗證,最後,實作三個輸入電壓36-75V 輸出400V/400W之電流饋入式之傳統倍壓整流電路、電流饋入式之新型倍壓整流電路與電流饋入式雙輸入電感之新型倍壓整流電路,俾以驗證本論文所提出分析方法的可行性


    A novel voltage doubler rectifier with non-electrolytic capacitor for sustainable energy power converters is proposed in this thesis. By applying the proposed rectifier to two current-fed converters as application examples, a current-fed push-pull boost converter with voltage doubler (CFBCVD) and a dual inductor current-fed boost converter with voltage doubler (DIBCVD) are presented. In addition to inheriting the advantages of the current-fed boost converters, the presented converters feature reduced output capacitor current ripple and output voltage ripple. Consequently, long life film capacitor can be used to replace the aluminum electrolytic capacitor and the reliability of the power converter can be enhanced. These features make it desirable for high frequency, high efficiency, high output-voltage, and high reliability power applications, such as the sustainable energy source power system. In addition to the operation principle, theoretical analysis, and design considerations, three voltage doubler rectifier current-fed push-pull converters are implemented and compared with 150 kHz, 36~75V input and 400V/400W output specifications.

    Abstract................... I Acknowledgements........... II Table of Contents.......... III List of Figures............ V List of Tables............. VIII Chapter 1 Introduction..... 1 1.1 Background and Motivation....... 1 1.2 Objectives of the Thesis........ 4 1.3 Organization of the Thesis...... 4 Chapter 2 Current-Fed Boost Converter with Voltage Doubler (CFBCVD)...... 6 2.1 Introduction............................. 6 2.2 Operation Principle...................... 7 2.3 Circuit Analysis......................... 10 2.3.1 Voltage gain ............................10 2.3.2 Output capacitor current analysis...... 10 2.3.3 Output voltage ripple cancellation..... 12 2.4 Comparisons of the CFBCVD and Conventional-VD..... 15 2.4.1 The transformer secondary windings current...... 15 2.4.2 The output capacitor current.................... 16 2.4.3 The output voltage ripple....................... 18 2.5 Circuit Design .....................................20 2.5.1 Transformer......................................20 2.5.2 Input inductor.................................. 24 2.5.3 Output capacitors............................... 25 2.5.4 Clamp capacitor................................. 25 2.5.5 Rectifier diodes................................ 25 2.5.6 Main switches................................... 26 2.6 Simulations Results................................27 2.7 Experimental Results..............................30 2.8 Summary........................................... 36 Chapter 3 Dual Inductor Current-Fed Boost Converter with Voltage Doubler (DIBCVD)............................ 38 3.1 Introduction.................... 38 3.2 Operation Principle............. 39 3.3 Circuit Analysis................ 42 3.3.1 Voltage gain ..................42 3.3.2 Input inductor current........ 42 3.4 Comparison between the CFBCVD and the DIBCVD...... 43 3.4.1 Input inductor current.......................... 43 3.4.2 Transformer..................................... 44 3.4.3 Voltage stress of the main switches............. 45 3.5 Circuit Design .....................................46 3.5.1 Transformer......................................46 3.5.2 Input inductor.................................. 49 3.5.3 Main switches................................... 50 3.6 Simulation Results................................ 51 3.7 Experimental Results.............................. 53 3.8 Summary........................................... 58 Chapter 4 Conclusion and Future Researches............ 59 4.1 Conclusions....................................... 59 4.2 Future Researches..................................60 References.............................................61 Vita...................................................65

    [1]S. R. Bull, “Renewable energy today and tomorrow,” in Proc. IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001.
    [2]B. K. Bose, “Energy, environment, and advances in power electronics,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 688-701, July 2000.
    [3]Ching-Tsai Pan, Ching-Ming Lai, Ming-Chieh Cheng, and Ching-Min Chung, “Integrated single-phase inverter with an auxiliary step-up circuit for low-voltage alternative energy source applications,” APPEEC 2010, vol., no., pp. 1-6, March 28-31 2010.
    [4]Chun Che Fung, W. Thanadechteemapat, and D. Harries, “Acquiring knowledge and information on alternative energy from the world wide web,” IEEE PES’09, vol., no., pp. 1-9, Jul. 26-30 2009.
    [5]D. J. Patterson, “Renewable energy engineering — Sustainable energy engineering — Anoverview,” COBEP’09., vol., no., pp.65-70, Sept. 27 2009-Oct. 1 2009.
    [6]U. Bossel, “On the way to a sustainable energy future,” INTELEC’05., vol., no., pp.659-668, Sept. 2005.
    [7]EG&G Technical Services, Inc. Science Applications International Corporation, Fuel Cell Handbook, 7th ed. Morgantown, WV: U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Nov. 2004.
    [8]H. B. Puttgen, P. R. MacGregor, and F. C. Lambert, “Distributed generation: Semantic hype or the dawn of a new era?” IEEE Power Energy, vol. 1, no. 1, pp. 22–29, Jan. /Feb. 2003.
    [9]M. Veerachary, T. Senjyu, and K. Uezato, “Maximum power point tracking control of IDB converter supplied PV system,” in Proc. IEE-Elect. Power Applicat., vol. 148, 2001, pp. 494–502.
    [10]X. Huang, X. Wang, T. Nergaard, J. S. Lai, X. Xu, and L. Zhu, “Parasitic ringing and design issues of digitally controlled high power interleaved boost converters,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1341-1352, Sept. 2004.
    [11]S. Jain, and V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1928-1940, Sept. 2007.
    [12]Changrong Liu, A. Johnson, and Jih-Sheng Lai, “A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications,” IEEE Trans. Ind. Applicat., vol. 41, no. 6, pp. 1691-1697, Nov. /Dec. 2005.
    [13]Hanju Cha, Jungwan Choi, and P.N. Enjeti, “A three-phase current-fed DC/DC converter with active clamp for low-DC renewable energy sources,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2784-2793, Nov. 2008.
    [14]H. Matsuo, Wenzhong Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, “Characteristics of the multiple-input DC-DC converter,” IEEE Trans. Power Electron., vol. 51, no. 3, pp. 625-631, June 2004.
    [15]Yaow-Ming Chen, Yuan-Chuan Liu, and Feng-Yu Wu, “Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1096- 1104, Jul. /Aug. 2002.
    [16]Y. Wang and C. Klumpner, “Optimal design of a DC/DC converter for photovoltaic applications,” IECON 2005., vol., no., pp. 6-10 Nov. 2005.
    [17]Li Wuhua, Xiaodong Lv, Yan Deng, Jun Liu, and Xiangning He, “A review of non-isolated high step-up DC/DC converters in renewable energy applications,” APEC 2009., vol., no., pp. 364-369, Feb. 15-19 2009.
    [18]W.C.P. De Aragao Filho and I. Barbi, “A comparison between two current-fed push-pull DC-DC converters-analysis, design and experimentation,” INTELEC‘96, vol., no., pp. 313-320, Oct. 6-10 1996.
    [19]D.A. Ruiz-Caballero and I. Barbi, “A new flyback-current-fed push-pull DC-DC converter,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1056-1064, Nov. 1999.
    [20]H.R.E. Larico and I. Barbi, “Double-coupled current-fed push-pull DC/DC converter: Analysis and experimentation,” COBEP’09., vol., no., pp. 305-312, Sept. 27 2009-Oct. 1 2009.
    [21]Jung-Min Kwon, Eung-Ho Kim, Bong-Hwan Kwon, and Kwang-Hee Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 826-834, Mar. 2009.
    [22]K.-S. Tam and E. Bloodworth, “Automated topological generation and analysis of voltage multiplier circuits,” IEEE Trans. Circuits and Systems, vol. 37, no. 3, pp. 432-436, Mar. 1990.
    [23]P. Lin and L. Chua, “Topological generation and analysis of voltage multiplier circuits,” IEEE Trans. Circuits and Systems, vol. 24, no. 10, pp. 517-530, Oct. 1977.
    [24]L. Malesani and R. Piovan, “Theoretical performance of the capacitor-diode voltage multiplier fed by a current source,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 147-155, Apr. 1993.
    [25]Y.J.A. Alcazar, R.T. Bascope, D.S. de Oliveira, E.H.P. Andrade, and W.G. Cardenas, “High voltage gain boost converter based on three-state switching cell and voltage multipliers,” IECON2008., vol., no., pp. 2346-2352, Nov. 10-13 2008.
    [26]I.C. Kobougias and E.C. Tatakis, “Optimal design of a half-wave Cockroft-Walton voltage multiplier with minimum total capacitance,” PESC2008., vol., no., pp. 1104-1109, June 15-19 2008.
    [27]M.E. Buechel, “High Voltage Multipliers in TV Receivers,” IEEE Trans. Broadcast and Television Receivers, vol. BTR-16, no. 1, pp. 32-36, Feb. 1970.
    [28]J. Budnick, T. Bertuccio, K. Kirk, M. Sewell, L. Corbin, and G. Brown, “Reliability improvements for Cockroft-Walton high voltage multipliers,” NSSMIC1991., vol., no., pp. 974-978 vol. 2, 2-9 Nov. 1991.
    [29]A.M.R. Amaral and A.J.M. Cardoso, “An automatic technique to obtain the equivalent circuit of aluminum electrolytic capacitors,” IECON2008. vol., no., pp. 539-544, 10-13 Nov. 2008.
    [30]Yaow-Ming Chen, Hsu-Chin Wu, Ming-Wei Chou, and Kung-Yen Lee, “Online Failure Prediction of the Electrolytic Capacitor for LC Filter of Switching-Mode Power Converters,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 400-406, Jan. 2008.
    [31]M. Hudis, “Large aluminum electrolytic capacitor constructed with an electrochemical cathode,” APEC’99., vol. 2, no., pp. 699-706 vol. 2, 14-18 Mar. 1999.
    [32]E.E. Smith, “Reliability of tantalum-foil-type electrolytic capacitors,” Proceedings of the IEE - Part B: Electronic and Communication Engineering, vol. 109, no. 22, pp. 543-547, 1962.
    [33]R.L. MaSaitis, A.J. Muller, R.L. Opila, L.A. Psota-Kelty, and S. Daoud, “Characterization and reliability of electrolytic capacitors exposed to halogenated solvents,” Electronic Components and Technology Conference, 1992. Proceedings., 42nd, vol., no., pp. 611-616, 18-20 May 1992.
    [34]Henry W. Ott, N osie Reduction Techniques In Electronic Systems, 2nd Ed, John Wiley & Sons, Inc, 1988.
    [35]Nippon Chemi-Con, Aluminum Electrolytic Capacitors Cat. NO. E1001G, issued October 2006.
    [36]EIA. World Energy Overview: 1995-2005. 2007 June - October 2007 [cited 2008 Sep 10]; Available from: http://www.eia.doe.gov/iea/overview.html.
    [37]George C. Chryssis, High-frequency switching power supplies, New York: McGraw Hill, 1995.
    [38]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Ed, John Wiley & Sons, Inc, 2003.
    [39]C. P. Basso, Switch-Mode Power Supplies, New York: McGraw-Hill, 2008.
    [40]“TDK’s European Website for Electronic Components & Systems,” http://www.tdk.co.jp/tefe02/e141.pdf
    [41]“YANGPU ELECTRONICS CO., LTO Magnetic power cores,” http://www.2622736.com/cs467.htm
    [42]“模擬濾波器設計之基礎篇” http://www.360doc.com/content/10/0530/21/617416_30383539.shtml
    [43]“SIMetrix Technologies,” http://www.simetrix.co.uk/
    [44]Ching-Shan Leu, U.S. Patent Pending, application date, Dec. 2010. [Current ripple reduction power conversion circuits]

    QR CODE