簡易檢索 / 詳目顯示

研究生: 陸正倫
CHENG-LUN LU
論文名稱: 用於動態系統的通用速率方程式運算法
Adaptive Generic Rate Equations Form in Kinetic Model
指導教授: 林保宏
Pao-Hung Lin
口試委員: 黃鶯聲
Ying-Sheng Huang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 103
中文關鍵詞: 中央代謝網路動態模組通用酵素方程式
外文關鍵詞: central metabolic network, generic enzymatic rate equations form, methylotrophic
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

酵素動力學被廣泛地運用在代謝網路和生物化學領域,尤其是大
型代謝模組的系統路徑。其中影響酵素反應速率的因素很多,例如反
應物的濃度、酵素濃度或抑制劑皆會影響。所以運用適當的演算方法
及動力學參數可以簡化計算過程,特別是在計算代謝物的濃度與通量
時。為了減輕繁複的運算過程,在我們的代謝反應模組採用通用酵素
方程式來計算。
在本論文中,結合了通用酵素方程式與中央代謝網路(AM1)的計
算方法,而AM1 它是一種在充滿甲醛的環境中生長的細菌所形成的
代謝模組,其中面對通式中的數學表達方法以及動力學參數的運算,
我們直接採用Matlab 中專門處理數學的工具來進行運算。經由模擬
之後,我們可經由實驗數據觀察動態模組的代謝物濃度及通量做穩態
分析。
我們的研究著重於通用酵素方程式演算法在Matlab 程式上的開
發與建立。在前半部我們先從AM1 的理論開始介紹,最後使用經由
運算所得知的代謝物濃度及通量模擬出系統的特徵圖形。


Enzyme dynamics is widely applied in metabolic networks and
many other biochemical fields,especially the systematic pathway is a
large scale metabolic model. There are many factors affect the catalysis of
enzyme such as concentration of reactants,enzymes and inhibitors.
Choosing suitable algorithm and kinetic parameters can simplify the
calculation process,in terms of metabolic fluxes and concentration of
metabolites.To alleviate some problems,we use generic enzymatic rate
equations form for the metabolic reactions in our model.
In this thesis, we combine generic form with the modeling of central
metabolic network AM1,a methylotrophic and environmental import
bacterium.With the explicitly mathematical representation of the
metabolic network,various kinetic parameters can be obtain via standard
mathematical tools which are usually available in Matlab. Experimental
results show that a set of steady state flux and metabolite concentrations
for the kinetic model .
Our implementation is focus on developing the Matlab program for the
generic form and In the beginning,we discussed the throry of AM1,finally
we used the a set of steady state flux and metabolite concentrations to
simulate the systematic characteristics.

目錄 圖目 錄 ................................................................................................... iii 表目 錄 ..................................................................................................... v 中英對照表 ............................................................................................... vi 符號對照表 .............................................................................................. vii 第一章 緒論 ............................................................................................. 1 1.1 引言 ................................................................................................. 1 1.2 研究動機 ......................................................................................... 1 1.3 本文架構 ......................................................................................... 2 第二章 文獻探討 .................................................................................... 3 2.1 酵素動力學..................................................................................... 3 2.1.1 酵素反應機制 ........................................................................ 3 2.1.2 酵素的分類與命名 ................................................................ 4 2.1.3 反應動力學 ............................................................................ 7 2.1.4 Michaelis‐Menten 方程式 ................................................... 11 2.2 酵素的抑制效應 .......................................................................... 14 2.3 代謝網路 ....................................................................................... 18 2.3.1 細菌的新陳代謝 .................................................................. 19 2.3.2 葡萄糖的糖解代謝途徑 ...................................................... 20 2.3.3 代謝路徑的調節 .................................................................. 22 2.4 AM1 中央代謝網路 ................................................................... 25 2.4.1 AM1 代謝網路的架構 ......................................................... 25 2.4.2 連續化學反應式的建構 ...................................................... 28 2.4.3 AM1 代謝網路的通量計算 ................................................. 32 ii 第三章 AM1 微分方程式的計算 ......................................................... 37 3.1 數值方法 ....................................................................................... 37 3.1.1 歐拉法 .................................................................................. 37 3.1.2 預測式-修正法 .................................................................. 40 3.1.3 倫基庫達法 .......................................................................... 42 3.2 常微分解法器 .............................................................................. 46 3.2.1 ode15s 語法 .......................................................................... 46 3.2.2 全域參數與odeset 函數 ...................................................... 47 3.3 通用方程式運用於MATLAB 的計算方法 .................................... 49 3.3.1 通量v的計算 ...................................................................... 49 3.3.2 微分方程式的建立以及通量V 的排列 ............................. 53 3.2.1 導入通量v並用ode15s 解微分方程式 ............................. 55 第四章 實驗結果與討論 ...................................................................... 57 4.1 實驗參數設定 .............................................................................. 57 4.2 濃度變量X 之穩態分析 .............................................................. 60 4.3 通量V 之穩態分析 ...................................................................... 68 第五章 結論與未來展望 ...................................................................... 76 參考文獻 ................................................................................................... 80 附錄 ........................................................................................................... 81 圖目 錄 第二章 圖 2.1 連續反應A、B、C 濃度的時間變化過程 ................................. 11 圖2.2 基質濃度(S)對反應速率V 的影響 ............................................... 14 圖2.3 葡萄糖代謝的EMBDEN-MEYERHOF-PARNAS 路徑 ...................... 20 圖2.4 葡萄糖代謝ENTNER-DOUDOROFF 路徑 ....................................... 21 圖2.5 KREBS CYCLE 或TCA CYCLE ......................................................... 22 圖2.6 FEEDBACK INHIBITION 的圖示 ........................................................ 23 圖2.7 ISOFUNCTIONAL ENZYMES 的抑制形式 .......................................... 23 圖2.8 CUMULATIVE FEEDBACK INHIBITION 的抑制形式 .......................... 24 圖2.9 SEQUENTIAL FEEDBACK INHIBITION 的抑制形式 ........................... 24 圖2.10 INHIBITION PLUS ACTIVATION 的抑制形式 ................................... 25 圖2.11 METHYLOBACTERIUM EXTORQUENS AM1 的代謝路徑 ............... 26 第三章 圖 3.1 以歐拉法求解之圖形 ................................................................... 39 圖3.2 修改步長後之圖形 ....................................................................... 39 圖3.3 運用改進的歐拉法求解之圖形 ................................................... 41 圖3.4 通用方程式的計算步驟 ............................................................... 49 圖3.5 通用方程式計算AM1 通量V 之流程圖 ..................................... 50 圖3.6 微分方程式的建立以及通量V 的排列流程圖 ........................... 53 圖3.7 ODE15S 求解流程圖 ....................................................................... 55 第四章 圖 4.1 利用ECNUMBER 在BRENDA 資料庫搜尋參數 ........................ 57 圖4.2 變量X 在時間軸上的變化(INDEX 1~5) ........................................ 60 iv 圖4.3 變量X 在時間軸上的變化(INDEX 11~15) .................................... 61 圖4.4 變量X 在時間軸上的變化(INDEX 16~20) .................................... 61 圖4.5 變量X 在時間軸上的變化(INDEX 26~30) ................................... 62 圖4.6 變量X 在時間軸上的變化(INDEX 35~40) ................................... 62 圖4.7 變量X 在時間軸上的變化(INDEX 41~45) ................................... 63 圖4.8 變量X 在時間軸上的變化(INDEX 46~50) ................................... 63 圖4.9 變量X 在時間軸上的變化(INDEX 51~55) ................................... 64 圖4.10 變量X 在時間軸上的變化(INDEX 56~60) ................................. 64 圖4.11 變量X 在時間軸上的變化(INDEX 66~70) ................................. 65 圖4.12 變量X 在時間軸上的變化(INDEX 71~75) .................................. 65 圖4.13 變量X 在時間軸上的變化(INDEX 81~85) ................................. 66 圖4.14 變量X 在時間軸上的變化(INDEX 86~90) ................................. 66 圖4.15 變量X 在時間軸上的變化(INDEX 91~95) ................................. 67 圖4.16 變量X 在時間軸上的變化(INDEX 96~100) ............................... 67 圖4.17 通量V 在時間軸上的變化(FLUX 1~3) ....................................... 68 圖4.18 通量V 在時間軸上的變化(FLUX 49~51) ................................... 69 圖4.19 通量V 在時間軸上的變化(FLUX 52~54) ................................... 69 圖4.20 通量V 在時間軸上的變化(FLUX 55~57) ................................... 70 圖4.21 通量V 在時間軸上的變化(FLUX 58~60) ................................... 70 圖4.22 通量V 在時間軸上的變化(FLUX 64~66) ................................... 71 圖4.23 通量V 在時間軸上的變化(FLUX 85~87) ................................... 71 圖4.24 通量V 在時間軸上的變化(FLUX 112~114) ............................... 72 圖4.25 通量V 在時間軸上的變化(FLUX 115~117) ............................... 72 圖4.26 通量V 在時間軸上的變化(FLUX 133~135) ............................... 73 圖4.27 通量V 在時間軸上的變化(FLUX 136~138) ............................... 73 圖4.28 通量V 在時間軸上的變化(FLUX 154~156) ............................... 74 v 圖4.29 通量V 在時間軸上的變化(FLUX 157~159) ............................... 74 圖4.30 通量V 在時間軸上的變化(FLUX 160~162) ............................... 75 表目 錄 第二章 表 2.1 酶的分類系統 ................................................................................. 5 表2.2 不同抑制反應的修正值 ............................................................... 10 表2.3 參與AM1 路徑反應的代謝物略表 ............................................ 27 表2.4 AM1 代謝物的速率方程式略表 ................................................ 28 表2.5 AM1 各代謝物的米氏常數及可逆通量略表 ............................ 30 第三章 表 3.1 ODESET 常用的參數功能 ............................................................... 48 表3.2 通用方程式計算通量V 之虛擬碼 ............................................... 51 表3.3 微分方程式的建立以及通量V 的排列虛擬碼 ........................... 54 表3.3 ODE15S 求解虛擬碼 ....................................................................... 56 第四章 表 4.1 模擬參數設定(INITIALVALUE.CSV) ............................................... 58 表4.2 酵素反應式(TRIALPARAMETER.CSV) ............................................

[1] Hood L. Systems biology: Integrating technology, biology,and computation.
Mech Aging Dev, 2003, 124: 9-16.
[2] Kell DB. Metabolomics and systems biology: makingsense of the soup. Curr
Opin Microbiol, 2004, 7: 296-307.
[3] Stelling, J. Mathematical models in microbial systems biology. Curr Opin
Microbiol, 2004, 7: 513-518.
[4] Sweetlove LJ, Last RL, Fernie AR. Predictive metabolic engineering: a goal for
systems biology. Plant Physiol,2003, 132: 420425.
[5] Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Bio,
2006, 2: 62.
[6] Ao P. Metabolic network modelling: including stochastic effects. Comp Chem
Eng, 2005, 29: 2297-2303.
[7] Levine E, Hwa T. Stochastic fluctuations in metabolic pathways. Proc Natl Acad
Sci USA, 2007, 104: 92249229.
[8] Steuer R, Gross T, Selbig J, et al. Structural kinetic modeling of metabolic
networks.Proc Natl Acad Sci USA,2006,103:1186811873.
[9] Qian H., Beard DA, Liang SD. Stoichiometric network theory for
nonequilibrium biochemical systems. Eur J Biochem, 2003, 270: 415421.
[10] Goldbeter A, Gonze D, Houart G, et al. From simple to complex oscillatory
behavior in metabolic and genetic control networks.Chaos, 2001, 11: 247260.
[11] Craciun G, Tang YZ, Feinberg M. Understanding bistability in complex
enzyme-driven reaction networks.PNAS, 2006, 103: 86978702.
[12] Chistoserdova L, Chen SW, Lapidus A, et al.Methylotrophy in
Methylobacterium exotorquens AM1 from a genomic point of view. J Bacteriol,
2003, 185:29802987.
[13] Guo XF, Lidstrom ME. Physiological analysis of Methylobacterium extorquens
AM1 grown in continuous and batch cultures. Arch Microbiol, 2006, 186:
139-149.
80
[14] Guo XF, Lidstrom ME. Metabolite profiling analysis of Methylobacterium
extorquens AM1 by comprehensive two-dimensional gas chromatography
coupled with time-of-flight mass spectrometry. Biotechnol Bioeng, 2007, 99:
929940.
[15] Van Dien SJ, Lidstrom ME. Stoichiometric model for evaluating the metabolic
capabilities of the facultative methylotroph Methylobacterium extorquens AM1,
with applications to reconstruction of C3 and C4 metabolism. Biotechnol Bioeng,
2002, 78: 296-312.
[16] Lee LW, Yin L, Zhu XM, et al. Generic enzymatic rate equation under living
conditions. J Biol Syst, 2007, 15: 495514.
[17] Cornish-Bowden A, Cardenas ML. Information transfer in metabolic pathways:
effects of irreversible steps in computer models. Eur J Biochem, 2001, 268:
6616-6624.
[18] Marx CJ, Van Dien SJ, Lidstrom ME. Flux analysis uncovers key role of
functional redundancy in formaldehyde metabolism. PLOS Biol, 2005, 3:
244253.
[19] 袁勤生,現代酶學(第二版),華東理工大學出版社,2007 年8 月
[20] 陳國誠,微生物酵素工程學,藝軒圖書出版社,1999 年3 月
[21] 李銘亮,微生物生理學, 藝軒圖書出版社,2002 年4 月
[22] Ping. Ao, Lik.Wee. Mary, E. Lidstrom,Lan Yin, and Xiaomei. Zhu. “Towards
Kinetic Modeling of Global Metabolic Networks with Incomplete Experimental
Input on Kinetic Parameters. Chinese Journal of Biotechnology 24 (2008)
980−994.
[23] William J.Palm III.Introduction to Matlab 7 for Engineers, McGraw-Hill, Dec
2005.
[24] 陳奇中,MATLAB 在化工上的運用,東華書局,2009 年10 月.
[25] 陳奇中,MATLAB 基礎學習與運用,東華書局,2009 年10 月.
[26] Yong-Cong CHEN, Ping AO, Wei Zheng, Xiaomei ZHU, Pao-hung Lin.
“Construct Metabolic Systems Dynamics”.

無法下載圖示 全文公開日期 2017/05/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE