簡易檢索 / 詳目顯示

研究生: 葉嘉翔
Jia-Siang Ye
論文名稱: 超奈米鑽石及寬能隙薄膜複合材料於碳布上之超級電容特性分析
The Studies of Ultra-nanocrystalline Diamond with Wide Bandgap Materials on Carbon Cloth for Supercapacitor Properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
章詠湟
Yung-Huang Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 198
中文關鍵詞: 碳布超奈米鑽石氧化鎵超級電容器
外文關鍵詞: Carbon cloth, Ultra-nanocrystalline diamond, Gallium oxide, Supercapacitor
相關次數: 點閱:386下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討了超奈米鑽石和氧化鎵薄膜等寬能隙材料複合於碳布上作為超級電容器之應用,並探討退火之後處理對此結構之影響。內文將分為兩個部分,第一部分致力於提升超奈米鑽石複合於碳布纖維上之均勻性與密度,並探討不同基板前處理和退火後處理對超奈米鑽石複合碳布結構之影響;第二部分旨在探討被視作第四代半導體材料之氧化鎵複合超奈米鑽石作為超級電容器之特性,並探討不同退火後處理對此兩種新型複合結構:Type I: N-UNCD / Ga2O3 / CC、Type II: Ga2O3 / N-UNCD / CC之影響。

研究發現,使用微波電漿輔助化學氣相沉積系統對碳布基板進行氫電漿之前處理,可以有效提升超奈米鑽石複合於碳布纖維上之均勻性,亦提升其作為超級電容器之重量比電容值――推測是因為經氫電漿前處理之碳布在微觀尺度下表面變得粗糙、親水性得到提升,故鑽石粉 (晶種) 於Seeding步驟時與碳布纖維之附著度和均勻度皆明顯提升,因此主製程階段時具有足量均勻分布之成核點誘發超奈米鑽石之均勻沉積。

此外,研究亦發現Type II: Ga2O3 / N-UNCD / CC複合結構在經過600℃大氣退火之後處理其重量比電容值會大幅增加――搭配FE-SEM、Raman和XRD之分析,可推測是因鍍於超奈米鑽石表面上之氧化鎵薄膜在退火過程中保護下層之EDLC結構 (N-UNCD / CC-H2) 不被退火之高溫破壞,同時其自身亦形成結晶性更佳之β-Ga2O3薄膜,致使兩種材料以碳-氧雙鍵 (C=O) 鍵結而成的同時,亦和碳布基板更好的複合,最終在EDLC和PC (Pseudocapacitor) 之協同作用下顯著提升了其電容值;最後,其重量比電容值在經過3000次循環充放電後提升為初始值的133.7%,表明此種Ga2O3 / ND / CC-H2新型複合結構具有優異之循環穩定性。


In this study, we combine two wide band gap materials: ultra-nanocrystalline diamond (UNCD) and gallium oxide (Ga2O3) films on carbon cloth, forming two types of novel composite structures: (i) N-UNCD / Ga2O3 / CC and (ii) Ga2O3 / N-UNCD / CC for supercapacitors. Studies have shown that applying hydrogen plasma pre-treatment on carbon cloth before seeding process can effectively improve the uniformity of N-UNCD on the carbon cloth substrate, leading to the increase of its specific capacitance value (F/g). Accroding to the FE-SEM results, the surface of the carbon cloth becomes rough and hydrophilic after the hydrogen plasma pre-treatment, leading to the improved adhesion and uniformity of diamond powder on carbon cloth during the seeding process, results in a sufficient amount of uniformly distributed nucleation sites on carbon cloth to induce uniform deposition of N-UNCD for the diamond growth.

In addition, studies have also shown that the specific capacitance value (F/g) of the (ii) Ga2O3 / N-UNCD / CC composite structure is greatly enhanced after being annealed at 600℃ in atmosphere. Accroding to the FE-SEM, Raman and XRD analysis, it can be suggested that the Ga2O3 film coated on the surface of N-UNCD not only protects the underlying EDLC structure (N-UNCD / CC-H2) from being damaged by the high temperature during the annealing process, but also becomes β-Ga2O3 film with better crystallinity (Pseudocapacitor, PC). As a result, it is indicated that carbon-oxygen double bonds (C=O) on carbon cloth might be an important factor to significantly improve the nanostructure and supercapacitance under the synergistic effect of EDLC and PC.

中文摘要----------I Abstract----------II 致謝----------III 目錄----------IV 圖目錄----------VIII 表目錄----------XX 第一章 緒論 1.1 前言----------1 1.2 研究動機----------3 第二章 文獻探討 2.1 鑽石材料之特性簡介----------5 2.1.1 碳系材料概述----------5 2.1.2 結晶鑽石之尺寸分類----------6 2.1.3 超奈米鑽石成長機制----------7 2.2 氧化鎵(Ga2O3)之特性簡介----------8 2.2.1 氧化鎵概述----------8 2.2.2 氧化鎵之型態與結構----------9 2.3 超級電容器之種類與機制----------11 2.3.1 超級電容器(Supercapacitor, SC)概述----------11 2.3.2 電雙層電容(Electrical Double Layer Capacitor, EDLC)----------13 2.3.3 贗電容(Pseudocapacitor, PC)----------16 2.3.4 混合電容(Hybrid Capacitor, HC)----------17 第三章 實驗方法 3.1 實驗設計與流程----------18 3.1.1 實驗設計----------18 3.1.2 超奈米鑽石複合碳布結構(N-UNCD/CC) 實驗流程圖----------21 3.1.3 超奈米鑽石/氧化鎵/碳布複合結構(N-UNCD/Ga2O3/CC)、氧化鎵/超奈米鑽石/碳布複合結構(Ga2O3/N-UNCD/CC) 實驗流程圖----------31 3.2 製備之材料介紹----------41 3.3 碳布基材之清洗----------42 3.4 碳布基材之前處理----------42 3.4.1 硝酸前處理----------43 3.4.2 氫電漿前處裡----------43 3.5 微波電漿化學氣相沉積法成長超奈米鑽石----------44 3.6 不同墊高基底(Si, Ni foam, Cu foam)上之碳布成長超奈米鑽石----------46 3.7 磁控薄膜濺鍍系統濺鍍氧化鎵薄膜----------46 3.8 管式高溫爐之後處理----------47 3.8.1 氮氣(N2)退火後處理----------47 3.8.2 大氣(Atmosphere)退火後處理----------49 3.9 儀器設備與材料分析方法----------50 3.9.1 場發射掃描式電子顯微鏡(Scanning Electron Microscope, FE-SEM)----------50 3.9.2 拉曼光譜儀(Raman Spectrum)----------51 3.9.3 X射線繞射儀(X-ray Diffraction, XRD)----------51 3.9.4 電化學分析儀(Electrochemical Workstation)----------52 第四章 超奈米鑽石複合碳布結構(N-UNCD/CC)之超級電容特性分析 4.1 超奈米鑽石(N-UNCD/CC)之特性分析----------54 4.1.1 N-UNCD/CC表面型態分析----------54 4.1.2 N-UNCD/CC循環伏安法(Cyclic voltammetry, CV)分析----------56 4.1.3 N-UNCD/CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------59 4.2 超奈米鑽石複合硝酸前處理碳布(N-UNCD/CC_Acid)之特性分析----------62 4.2.1 N-UNCD/CC_Acid表面型態分析----------63 4.2.2 N-UNCD/CC_Acid循環伏安法(Cyclic voltammetry, CV)分析----------64 4.2.3 N-UNCD/CC_Acid恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------67 4.3 超奈米鑽石複合氫電漿前處理碳布(N-UNCD/CC_H2)之特性分析----------69 4.3.1 N-UNCD/CC_H2表面型態分析----------70 4.3.2 N-UNCD/CC_H2拉曼光譜儀分析----------71 4.3.3 N-UNCD/CC_H2循環伏安法(Cyclic voltammetry, CV)分析----------73 4.3.4 N-UNCD/CC_H2恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------76 4.4 不同墊高基底(Si, Ni foam, Cu foam)上之碳布成長超奈米鑽石(N-UNCD/CC_H2+(Si, NiF, CuF))結構之特性分析----------78 4.4.1 N-UNCD/CC_H2+(Si, NiF, CuF)表面型態分析----------79 4.4.2 N-UNCD/CC_H2+(Si, NiF, CuF)拉曼光譜儀分析----------82 4.4.3 N-UNCD/CC_H2+(Si, NiF, CuF)循環伏安法(Cyclic voltammetry, CV)分析----------84 4.4.4 N-UNCD/CC_H2+(Si, NiF, CuF)恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------89 4.5 不同退火後處理超奈米鑽石(N-UNCD_Anneal/CC_H2+(CuF*3))之特性分析----------92 4.5.1 N-UNCD_Anneal/CC_H2+(CuF*3)表面型態分析----------92 4.5.2 N-UNCD_Anneal/CC_H2+(CuF*3)拉曼光譜儀分析----------97 4.5.3 N-UNCD_Anneal/CC_H2+(CuF*3)循環伏安法(Cyclic voltammetry, CV)分析----------98 4.5.4 N-UNCD_Anneal/CC_H2+(CuF*3)恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------102 4.6 N-UNCD_ A600-Air / CC_H2+(CuF*3)循環充放電之穩定性分析----------106 4.7 N-UNCD/CC結構超級電容特性之比較----------107 第五章 超奈米鑽石/氧化鎵/碳布複合結構(N-UNCD/Ga2O3/CC)及氧化鎵/超奈米鑽石/碳布複合結構(Ga2O3/N-UNCD/CC)之超級電容特性分析 5.1 不同退火後處理氧化鎵(Ga2O3_Anneal/CC_H2)之特性分析----------112 5.1.1 Ga2O3_Anneal/CC_H2表面型態分析----------112 5.1.2 Ga2O3_Anneal/CC_H2拉曼光譜儀分析----------117 5.1.3 Ga2O3_Anneal/CC_H2 X-ray繞射儀分析----------120 5.1.4 Ga2O3_Anneal/CC_H2循環伏安法(Cyclic voltammetry, CV)分析----------122 5.1.5 Ga2O3_Anneal/CC_H2恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------129 5.2 不同退火後處理超奈米鑽石/氧化鎵/碳布複合結構(Type I: N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3))之特性分析----------135 5.2.1 N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3)表面型態分析----------136 5.2.2 N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3)拉曼光譜儀分析----------140 5.2.3 N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3) X-ray繞射儀分析----------143 5.2.4 N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3)循環伏安法(Cyclic voltammetry, CV)分析----------145 5.2.5 N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3)恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------154 5.3 不同退火後處理氧化鎵/超奈米鑽石/碳布複合結構(Type II: Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3))之特性分析----------159 5.3.1 Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3)表面型態分析----------160 5.3.2 Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3)拉曼光譜儀分析----------164 5.3.3 Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3) X-ray繞射儀分析----------168 5.3.4 Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3)循環伏安法(Cyclic voltammetry, CV)分析----------170 5.3.5 Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3)恆電流充放電(Galvanostatic charge/discharge, GCD)分析----------178 5.4 Ga2O3/N-UNCD/CC_H2+(CuF*3)、Ga2O3_ A650-N2/N-UNCD/CC_H2+(CuF*3)、Ga2O3_ A600-Air/N-UNCD/CC_H2+(CuF*3)循環充放電之穩定性分析----------185 5.5 Ga2O3_Anneal/CC_H2、Type I: N-UNCD/Ga2O3_Anneal/CC_H2+(CuF*3)、Type II: Ga2O3_Anneal/N-UNCD/CC_H2+(CuF*3)三種不同結構超級電容特性之比較----------186 第六章 結論與未來展望 6.1 結論----------197 6.2 未來展望----------197 參考文獻----------199

[1]. J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science, 321 (2008), 651-652.
https://doi.org/10.1126/science.1158736
[2]. https://www.eettaiwan.com/20210901nt31-looking-at-hybrid-supercapacitors/
[3]. Yanfang Xu, Weibang Lu, Guangbiao Xu, Tsu-Wei Chou, Structural supercapacitor composites: A review, Composites Science and Technology, 204 (2021), 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[4]. S. Zhang, N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5 (2015), 1401401.
https://doi.org/10.1002/aenm.201401401
[5]. Sachin Kumar, Ghuzanfar Saeed, Ling Zhu, Kwun Nam Hui, Nam Hoon Kim, Joong Hee Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal, 403 (2021), 126352.
https://doi.org/10.1016/j.cej.2020.126352
[6]. M. Yu, Y. Lu, H. Zheng and X. Lu, New Insights into the Operating Voltage of Aqueous Supercapacitors, Chem.–Eur. J., 24 (2018), 3639-3649.
https://doi.org/10.1002/chem.201704420
[7]. Xiaoqing Liu, Wei Xu, Dezhou Zheng, Zhifeng Li, Yinxiang Zeng and Xihong Lu, Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges, J. Mater. Chem. A, 8 (2020), 17938-17950.
https://doi.org/10.1039/D0TA03463K
[8]. V. Strauss, K. Marsh, M. D. Kowal, M. El-Kady and R. B. Kaner, A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications, Adv. Mater., 30 (2018), 1704449.
https://doi.org/10.1002/adma.201704449
[9]. R. K. L. Tan, S. P. Reeves, N. Hashemi, D. G. Thomas, E. Kavak, R. Montazami and N. N. Hashemi, Graphene as a flexible electrode: review of fabrication approaches, J. Mater. Chem. A, 5 (2017), 17777–17803.
https://doi.org/10.1039/C7TA05759H
[10]. Y. Horng, Y. Lu, Y. Hsu, C. Chen, L. Chen and K. Chen, Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance, J. Power Sources, 195 (2010), 4418–4422.
https://doi.org/10.1016/j.jpowsour.2010.01.046
[11]. P. Du, Y. Dong, H. Kang, X. Yang, Q. Wang, J. Niu, S. Wang and P. Liu, Graphene-Wrapped Polyaniline Nanowire Array Modified Functionalized of Carbon Cloth for High-Performance Flexible Solid-State Supercapacitor, ACS Sustainable Chem. Eng., 6 (2018), 14723-14733.
https://doi.org/10.1021/acssuschemeng.8b03278
[12]. W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu and Y. Tong, A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth, Adv. Mater., 27 (2015), 3572–3578.
https://doi.org/10.1002/adma.201500707
[13]. Y. Han, Y. Lu, S. Shen, Y. Zhong, S. Liu, X. Xia, Y. Tong and X. Lu, Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors, Adv. Funct. Mater., 29 (2019), 1806329.
https://doi.org/10.1002/adfm.201806329
[14]. R. B. Weisman, New Frontiers in Nanocarbons, Electrochem. Soc. Interface, 22 (2013), 49.
https://doi.org/10.1149/2.F02133if
[15]. R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108 (2008), 2646-2687.
https://doi.org/10.1021/cr068076m
[16]. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162-163.
https://doi.org/10.1038/318162a0
[17]. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991), 56-58.
https://doi.org/10.1038/354056a0
[18]. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004), 666-669.
https://doi.org/10.1126/science.1102896
[19]. R. N. Adams, Anal. Chem., Probing brain chemistry with electroanalytical techniques, 48 (1976), 1126A–1138A.
https://doi.org/10.1021/ac50008a001
[20]. Nianjun Yang, Siyu Yu, Julie V. Macpherson, Yasuaki Einaga, Hongying Zhao, Guohua Zhao, Greg M. Swain and Xin Jiang, Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 48 (2019), 157-204.
https://doi.org/10.1039/C7CS00757D
[21]. Seiichiro Matsumoto, Yoichiro Sato, Mutsukazu Kamo and Nobuo Setaka, Vapor deposition of diamond particles from methane, Japanese Journal of Applied Physics, 21 (1982), L183.
https://doi.org/10.1143/JJAP.21.L183
[22]. C. R. Lin, D. H. Wei, M. K. BenDao, W. E. Chen, T. Y. Liu, Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film, International Journal of Photoenergy, 2014 (2014), 492152.
https://doi.org/10.1155/2014/492152
[23]. Arora, S. and V. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness, Thin Solid Films, 515(4) (2006), 1963-1969.
https://doi.org/10.1016/j.tsf.2006.08.002
[24]. S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, Emission characteristic of diamond-tip FEA fabricated by transfer mold technique, IEEE, 526 (1996), 526-529.
https://doi.org/10.1109/IVMC.1996.601879
[25]. O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman,
[26]. O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17(7–10) (2008), 1080-1088.
https://doi.org/10.1016/j.diamond.2008.01.103
[27]. Butler, J.E. and Sumant, A.V., The CVD of Nanodiamond Materials, Chemical Vapor Deposition, 14 (2008), 145-160.
https://doi.org/10.1002/cvde.200700037
[28]. Rani, R., Kumar, N., Kozakov, A.T., Googlev, K.A. and Sankaran, K.J., Superlubrication Properties of Ultra-Nanocrystalline Diamond Film Sliding against a Zirconia Ball. RSC Advances, 5 (2015), 100663-100673.
https://doi.org/10.1039/C5RA18832F
[29]. J. Yang, and Y. Zhang, Nanocrystalline Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition and Its Biocompatible Property, Advances in Materials Physics and Chemistry, 8 (2018), 157-176.
https://doi.org/10.4236/ampc.2018.84011
[30]. Fan Dong, Liwen Wu, Yanjuan Sun, Min Fu, Zhongbiao Wu and S. C. Lee, Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21(39) (2011), 15171-15174.
https://doi.org/10.1039/C1JM12844B
[31]. Ikeda, T., Teii, K., Casiraghi, C., Robertson, J. and Ferrai, A.C., Effect of the sp2 Carbon Phase on n-Type Conduction in Nanodiamond Films, Journal of Applied Physics, 104 (2008), 073720.
https://doi.org/10.1063/1.2990061
[32]. Hu, Q., Joshi, R.K. and Kumar, A., Electrons Diffusion Study on the Nitrogen-Doped Nanocrystalline Diamond Film Grown by MPECVD Method, Applied Surface Science, 256 (2010), 6233-6236.
https://doi.org/10.1016/j.apsusc.2010.03.147
[33]. Yuan, W., Fang, L.P., Feng, Z., Chen, Z.X., Wen, J.W. and Xiong, Y., Highly Conductive Nitrogen-Doped Ultrananocrystalline Diamond Films with Enhanced Field Emission Properties: Triethylamine as a New Nitrogen Source, Journal of Materials Chemistry C, 4 (2016), 4778-4785.
https://doi.org/10.1039/C6TC00087H
[34]. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Review of Ga2O3-based optoelectronic devices, Materials Today Physics, 11 (2019), 100157.
https://doi.org/10.1016/j.mtphys.2019.100157
[35]. R. Roy, V. G. Hill, and E. F. Osburn, Polymorphism of Ga2O3 and the System Ga2O3-H2O, J. Am. Chem. Soc. 74(3) (1952), 719-722.
https://doi.org/10.1021/ja01123a039
[36]. Marko J. Tadjer, John L. Lyons, Neeraj Nepal, Jaime A. Freitas Jr., Andrew D. Koehler and Geoffrey M. Foster, Editors' Choice-Review-Theory and Characterization of Doping and Defects in β-Ga2O3, ECS J. Solid State Sci. Technol. 8 (2019), Q3187.
https://doi.org/10.1149/2.0341907jss
[37]. Z. Galazka, β-Ga2O3 for wide-bandgap electronics and optoelectronics, Semicond. Sci. Technol., 33 (2018), 113001.
https://doi.org/10.1088/1361-6641/aadf78
[38]. R. Roy, V.G. Hill, E.F. Osborn, Polymorphism of Ga2O3 and the System Ga2O3-H2O, J. Am. Chem. Soc., 74 (1952), 719-722.
https://doi.org/10.1021/ja01123a039
[39]. S. Penner, C. Zhuo, R. Thalinger, M. Grünbacher, C. Hejny, S. Vanicek, M. Noisternig, Physico-chemical properties of unusual Ga2O3 polymorphs, Monatshefte Chem., 147 (2015), 289-300.
https://doi.org/10.1007/s00706-015-1628-z
[40]. H.Y. Playford, A.C. Hannon, E.R. Barney, R.I. Walton, , Chem. Eur. J., 19(8) (2013), 2803-2813.
https://doi.org/10.1002/chem.201203359
[41]. I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pécz, R. Fornari, The real structure of ε-Ga2O3 and its relation to κ-phase, CrystEngComm, 19 (2017), 1509.
https://doi.org/10.1039/C7CE00123A
[42]. D.Y. Guo, P.G. Li, Z.W. Chen, Z.P. Wu, W.H. Tang, Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector, Acta Phys. Sin., 68(7) (2019), 078501.
https://doi.org/10.7498/aps.68.20181845
[43]. S. Abolhosseini, A. Heshmati, J. Altmann, A review of renewable energy supply and energy efficiency technologies, Cog. Eng. 8145 (2014).
https://dx.doi.org/10.2139/ssrn.2432429
[44]. Wang S, Wei T, Qi Z., Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami D.Y., Zhao Y. (eds) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75997-3_566
[45]. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18 (5) (2015), 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[46]. W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, et al., Recent advancements in supercapacitor technology, Nano Energy, 52 (2018), 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[47]. J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions, J Power Sources, 401 (2018), 213-223.
https://doi.org/10.1016/j.jpowsour.2018.08.090
[48]. Binoy K. Saikia, Santhi Maria Benoy, Mousumi Bora, Joyshil Tamuly, Mayank Pandey, Dhurbajyoti Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel, 282 (2020), 118796.
https://doi.org/10.1016/j.fuel.2020.118796.
[49]. N.P. Shetti, S. Dias, K.R. Reddy, Nanostructured organic and inorganic materials for Li-ion batteries: a review, Mater Sci Semicond Process, 104 (2019), 104684.
https://doi.org/10.1016/j.mssp.2019.104684
[50]. R.E. Ruther, C.N. Sun, A. Holliday, S. Cheng, F.M. Delnick, T.A. Zawodzinski Jr., et al., Stable electrolyte for high voltage electrochemical double-layer capacitors, J Electrochem Soc (2017), A277-A283.
https://doi.org/10.1149/2.0951702jes
[51]. Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A High-performance electrochemical supercapacitor based on polyaniline/reduced graphene oxide electrode and copper (ii) ion active electrolyte, Phys. Chem. Chem. Phys., 20 (1) (2017), 131-136.
https://doi.org/10.1039/c7cp07156f
[52]. Yanfang Xu, Weibang Lu, Guangbiao Xu, Tsu-Wei Chou, Structural supercapacitor composites: A review, Composites Science and Technology, 204 (2021), 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[53]. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41 (2012), 797-828.
https://doi.org/10.1039/C1CS15060J
[54]. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58 (2016), 1189-1206.
https://doi.org/10.1016/j.rser.2015.12.249
[55]. K. Poonam, A. Sharma, S.K. Arora, Tripathi, review of supercapacitors: materials and devices, J. Energy Stor., 21 (2019), 801-825.
https://doi.org/10.1016/j.est.2019.01.010
[56]. R.L. Spyker, R.M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor, IEEE Trans Aerosp Electron Syst, 36 (3) (2000), 829-836.
https://doi.org/10.1109/7.869502
[57]. Y. Show, Research article on electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode, J Nanomater (2012), 1-8.
https://doi.org/10.1155/2012/929343
[58]. M. Yassine, D. Fabris, Performance of commercially available supercapacitors, Energies, 10 (9) (2017), 1340-1352.
https://doi.org/10.3390/en10091340
[59]. Kim BK, Sy S, Yu A, Zhang J., Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, Wiley Publications (2015), 1-25.
https://doi.org/10.1002/9781118991978.hces112.
[60]. Yong S., Fabrication and characterisation of fabric supercapacitor [Doctoral Thesis], University of Southampton (2016) p.160.
[61]. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
[62]. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597-1664.
https://doi.org/10.1039/C3EE44164D
[63]. C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, J. Front. Energy Res., 3(23) (2015), 1-8.
https://doi.org/10.3389/fenrg.2015.00023
[64]. Sachin Kumar, Ghuzanfar Saeed, Ling Zhu, Kwun Nam Hui, Nam Hoon Kim, Joong Hee Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal, 403 (2021), 126352.
https://doi.org/10.1016/j.cej.2020.126352
[65]. W. Jiang, F. Hu, Q. Yan, X. Wu, Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: the role of aqueous electrolyte, Inorg Chem Front, 4(10) (2017), 1642-1648.
https://doi.org/10.1039/C7QI00391A
[66]. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chem Soc Rev, 44(7) (2015), 1777-1790.
https://doi.org/10.1039/C4CS00266K
[67]. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy Environ Mater, 2(1) (2019), 30-37.
https://doi.org/10.1002/eem2.12028
[68]. X. Yuan, Y. Zhang, Y. Yan, B. Wei, K. Qiao, B. Zhu, X. Cai, T.-W. Chou, Tunable synthesis of biomass-based hierarchical porous carbon scaffold@ MnO2 nanohybrids for asymmetric supercapacitor, Chem. Eng. J., 393 (2020), 121214.
https://doi.org/10.1016/j.cej.2019.03.090
[69]. Shuilin Wu, Yatu Chen, Tianpeng Jiao, Jun Zhou, Junye Cheng, Bin Liu, Shaoran Yang, Kaili Zhang,Wenjun Zhang, An Aqueous Zn-Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80,000 Cycles, Advanced Energy Materials, 9(47) (2019), 1902915.
https://doi.org/10.1002/aenm.201902915
[70]. H. Gualous et al., Supercapacitor Characterization and Thermal Modelling With Reversible and Irreversible Heat Effect, IEEE Transactions on Power Electronics, 26(11) (2011), 3402.
https://doi.org/10.1109/TPEL.2011.2145422
[71]. H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B.C. Olsen, C.M. Holt, D. Mitlin, Hybrid Device Employing Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges Battery–Supercapacitor Divide, Nano Lett., 14 (2014), 1987-1994.
https://doi.org/10.1021/nl500011d
[72]. M. Polovina, B. Babić, B. Kaluderović, A. Dekanski, Surface characterization of oxidized activated carbon cloth, Carbon, 35 (1997), 1047-1052.
https://doi.org/10.1016/S0008-6223(97)00057-2
[73]. W. Zhou, K. Zhou, X. Liu, R. Hu, H. Liu, S. Chen, Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers, J. Mater. Chem. A, 2 (2014), 7250-7255.
https://doi.org/10.1039/c3ta15280d
[74]. Hung-Hua Chien, Chen-Yu Liao, Yu-Chuan Hao, Cheng-Che Hsu, I-Chun Cheng, Ing-Song Yu, Jian-Zhang Chen, Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth, Electrochimica Acta, 260 (2018), 391-399.
https://doi.org/10.1016/j.electacta.2017.12.060
[75]. Sachin A. Pawar, Dipali S. Patil, Jae Cheol Shin, Hexagonal sheets of Co3O4 and Co3O4-Ag for high-performance electrochemical supercapacitors, Journal of Industrial and Engineering Chemistry, 54 (2017), 162-173.
https://doi.org/10.1016/j.jiec.2017.05.030
[76]. Hongmei Ji, Chao Liu, Ting Wang, Jing Chen, Zhengning Mao, Jin Zhao, Wenhua Hou, Gang Yang, Porous Hybrid Composites of Few-Layer MoS2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance, Small, 11(48) (2015), 6480-6490.
https://doi.org/10.1002/smll.201502355
[77]. Hyoun Woo Kim, Nam Ho Kim, Annealing effects on the properties of Ga2O3 thin films grown on sapphire by the metal organic chemical vapor deposition, Applied Surface Science, 230(1-4) (2004), 301-306.
https://doi.org/10.1016/j.apsusc.2004.02.063
[78]. F Egyenes-Pörsök, F Gucmann, K Hušeková, E Dobročka, M Sobota, M Mikolášek, K Fröhlich and M Ťapajna, Growth of α- and β-Ga2O3 epitaxial layers on sapphire substrates using liquid-injection MOCVD, Semicond. Sci. Technol. 35 (2020), 115002.
https://doi.org/10.1088/1361-6641/ababdc
[79]. Ching-Hwa Ho, Chiao-Yeh Tseng, and Li-Chia Tien, Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips, Opt. Express 18 (2010), 16360-16369.
https://doi.org/10.1364/OE.18.016360
[80]. Kun Zhang, Zongwei Xu, Junlei Zhao, Hong Wang, Jianmin Hao, Shengnan Zhang, Hongjuan Cheng, Bing Dong, Temperature-dependent Raman and photoluminescence of β-Ga2O3 doped with shallow donors and deep acceptors impurities, Journal of Alloys and Compounds, 881 (2021), 160665.
https://doi.org/10.1016/j.jallcom.2021.160665
[81]. A. Kyrtsos, M. Matsubara, E. Bellotti, Migration mechanisms and diffusion barriers of vacancies in Ga2O3, Phys. Rev. B, 95 (2017), 245202.
https://doi.org/10.1103/PhysRevB.95.245202
[82]. Ain, Q. T.; Haq, S. H.; Alshammari, A.; Al-Mutlaq, M. A.; Anjum, M. N. Beilstein, The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model, J. Nanotechnol., 10 (2019), 901-911.
https://doi.org/10.3762/bjnano.10.91
[83]. I.М. Afanasov, O.N. Shornikova, V.V. Avdeev, O.I. Lebedev, G. Van Tendeloo, A.T. Matveev, Expanded graphite as a support for Ni/carbon composites, Carbon, 47(2) (2009), 513-518.
https://doi.org/10.1016/j.carbon.2008.10.034
[84]. Jian Huang, Bing Li, Yuncheng Ma, Ke Tang, Haofei Huang, Yan Hu, Tianyu Zou and Linjun Wang, Effect of Homo-buffer Layers on the Properties of Sputtering Deposited Ga2O3 Films, Mater. Sci. Eng. 362 (2018), 012003.
https://doi.org/10.1088/1757-899X/362/1/012003
[85]. Salvatore, M., Carotenuto, G., De Nicola, S. et al., Synthesis and Characterization of Highly Intercalated Graphite Bisulfate, Nanoscale Res Lett, 12 (2017), 167.
https://doi.org/10.1186/s11671-017-1930-2
[86]. S Mustapha, M M Ndamitso, A S Abdulkareem, J O Tijani, D T Shuaib, A K Mohammed and A Sumaila, Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles, Adv. Nat. Sci: Nanosci. Nanotechnol., 10 (2019), 045013.
https://doi.org/10.1088/2043-6254/ab52f7
[87]. Tayi, A., Shveyd, A., Sue, AH. et al., Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes, Nature, 488 (2012), 485-489.
https://doi.org/10.1038/nature11395
[88]. F. Gao, M.T. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro supercapacitor material, Carbon, 80 (2014), 833-840.
https://doi.org/10.1016/j.carbon.2014.09.007
[89]. F. Gao, C.N. Nebel, Diamond-based supercapacitors: realization and properties, ACS Appl. Mater. Interfaces, 8, 42 (2016), 28244-28254.
https://doi.org/10.1021/acsami.5b07027
[90]. Siyu Yu, Nianjun Yang, Hao Zhuang, Jan Meyer, Soumen Mandal, Oliver A. Williams, Inga Lilge, Holger Schönherr, and Xin Jiang, Electrochemical Supercapacitors from Diamond, J. Phys. Chem. C, 119, 33 (2015), 18918-18926.
https://doi.org/10.1021/acs.jpcc.5b04719
[91]. H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, Electrochemical Properties and Applications of Nanocrystalline, Microcrystalline, and Epitaxial Cubic Silicon Carbide Films, ACS Appl. Mater. Interfaces, 7 (2015), 10886-10895.
https://doi.org/10.1021/acsami.5b02024
[92]. Liu C, Cheng X, Dai Z, Liu R, Li Z, Cui L, Chen M, Ke L., Synergistic Effect of Al2O3 Inclusion and Pearlite on the Localized Corrosion Evolution Process of Carbon Steel in Marine Environment, Materials., 11(11) (2018), 2277.
https://doi.org/10.3390/ma11112277

無法下載圖示 全文公開日期 2027/01/18 (校內網路)
全文公開日期 2027/01/18 (校外網路)
全文公開日期 2027/01/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE