簡易檢索 / 詳目顯示

研究生: 蕭丞佑
CHENG-YOU XIAO
論文名稱: 全橋相移轉換器的研製
Design and Implementation of a Phase Shifted Full Bridge Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 陳耀銘
邱煌仁
謝耀慶
王見銘
劉邦榮
劉益華
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 118
中文關鍵詞: 全橋相移轉換器零電壓切換緩振電路
外文關鍵詞: Phase shifted full bridge converter, ZVS, Snubber
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目標為建構出一全橋相移轉換器的設計流程,以達到高效
    率的表現。為達到此目的,本論文先從初級側橋臂開關損耗模型開始
    分析,探討使用新的損耗模型與傳統之間的差異,並從中找出全橋相
    移轉換器在輕載硬開關切換時導通與截止所造成的切換損失以及改
    善的方法。為了降低次級側開關的電壓應力以及使轉換器能更輕易地
    達到零電壓切換,本文接著介紹使用箝位二極體的全橋相移轉換器動
    作行為,分析轉換器的等效電路以及推導出箝位二極體的損耗,並比
    較兩種連接方式找出適合應用的場合以及加入箝位二極體前後對整
    體轉換器損耗的影響,方便設計者在前期規劃時能選擇合適的設計參
    數。此外,由於擁有較高的di/dt 關斷電流造成同步整流元件較高的
    電壓應力,因此使用無損箝位型主動緩振電路來達到降低損失的目的,
    並透過動作分析推導出緩振電路的設計方式,來獲得高功率密度、低
    損耗的目的。最後整合出上述的模型並使用一設計流程分別針對各部
    分的損耗進行分析,進而達到設計出一高效率的全橋相移轉換器。


    The purpose is to build a design procedure of phase shifted full bridge
    converter for high efficient performance. Firstly, this dissertation analyzes
    the loss model of primary-side MOSFET whitch is used to be compare the
    difference with the conventional loss model. And find out how to reduce
    the turn on and turn off loss of hard switching condition during light load
    condition.
    Secondly, in order to reduce voltage stress of synchronous rectifier
    and achieve the zero voltage switching for primary-side MOSFET more
    easily, the paper then introduces the operating principle of phase shifted
    full bridge converter with clamping diode, analyzes the equvalent circuit
    of the converter and derives the loss of the clamping diode. Moreover, two
    types of clamping diode methods are compared to find the appropriate
    application and the effect for the entire loss of converter, whitch is more
    convenient for designer to choose the suitable parameters in the advance
    planning.
    Thirdly, the high voltage stress on the synchronous rectifier due to
    high di/dt turn off current, which has larger power loss of snubber circuit.
    This dissertation purposed a method to design buck-type lossless snubber.
    By using the different input capacitance of snubber circuit, a high density,
    low cost and low loss lossless snubber is achieved.
    Finally, integrate all the loss model and build a design flow chart to
    achieve high efficiency phase shifted full bridge converter.

    摘要 .............................................................................................................. i Abstract ....................................................................................................... ii 誌謝 ........................................................................................................... iii 目錄 ............................................................................................................ iv 圖目錄 ........................................................................................................ vi 表目錄 ....................................................................................................... xii 第一章 緒論 ............................................................................................. 1 1.1 研究動機與目的 ............................................................... 1 1.2 論文大綱 ............................................................................ 4 第二章 應用於全橋相移轉換器橋臂開關的損耗模型 ......................... 6 2.1 動作區間介紹與分析 ........................................................ 8 2.1.1 截止時開關切換過程 .............................................. 10 2.1.2 導通時開關切換過程 .............................................. 18 2.2 模擬與實驗結果 .............................................................. 27 第三章 全橋相移轉換器箝位二極體的分析 ....................................... 32 3.1 動作區間介紹與分析 ...................................................... 35 3.2 輕載時的動作行為 ......................................................... 50 3.3 實驗結果與分析 ............................................................. 53 3.3.1 對初級側橋臂開關的影響 ...................................... 54 3.3.2 對於次級側緩振電路的影響 .................................. 55 附錄3-A 變壓器映射至次級側等效電路模型與同步整流 開關電壓電流推導 .................................................................. 57 附錄3-B 本體二極體逆向恢復參數取得及操作時逆向恢 復時間與逆向恢復峰值電流計算 .......................................... 62 第四章 主動箝位型緩振電路分析與設計 ........................................... 66 4.1 動作區間介紹 ................................................................. 70 4.2 分析與設計 ..................................................................... 76 4.2 實驗結果 ......................................................................... 79 第五章 全橋相移轉換器設計流程 ....................................................... 83 第六章 結論和未來展望 ....................................................................... 97 6.1 結論 .................................................................................. 97 6.2 未來展望 ......................................................................... 98 參考文獻 ................................................................................................... 99

    [1] J. G. Cho, J. A. Sabate, and F. C. Lee, “Novel full bridge zero-voltagetransition
    PWM DC/DC converter for high power applications,” IEEE
    APEC, 1994, pp.143-149.
    [2] C.-M. Wang, "A new family of zero-current-switching (ZCS) PWM
    converters", IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1117-1125,
    Aug. 2005.
    [3] Z. Emami, M. Nikpendar, N. Shafiei, and S. R. Motahari, “Leading
    and lagging-legs power loss analysis in ZVS phase-shift full bridge
    converter,” Proc. PEDSTC, 2011, pp. 632-637.
    [4] H. Lei, J. Guo, X. Jing, N. Mi, R. Chung, and S. Luo, “Design
    considerations for secondary side synchronous rectifier MOSFETs in
    phase shifted full bridge converter,” IEEE APEC, 2013, pp. 526-531.
    [5] S. Lei, Z. J. Su, and Y. T. Chang, “Design and optimization of parallel
    DC-DC system based on current-driven phase shift full bridge
    converter,” IEEE APEC, 2014, pp. 2048-2053.
    [6] Z. Lei, L. Haoyu, Y. Yu and Y. Wang, "Optimum dead-time control
    method of phase-shifted converter to extend the ZVS range," 2015
    IEEE International Telecommunications Energy Conference
    (INTELEC), Osaka, 2015, pp. 1-4
    [7] W. Yang, P. Geng, Y. Wang, P. Zhang and Z. Xu, "The affect of
    deadtime to ZVS phase-shifted full-bridge converter," 2015 18th
    International Conference on Electrical Machines and Systems
    (ICEMS), Pattaya, 2015, pp. 578-580.
    [8] Estimating MOSFET Parameters From the Datasheet, Texas
    InstrumentSeminar Topics Slup170, 2002. [Online]. Available:
    http://focus.ti.com/lit/ml/slup170/slup170.pdf
    [9] ON Semiconductor. MOSFET gate-charge origin and its applications.
    Technical report, On Semiconductor, August 2014.
    [10] L. Balogh, "Fundamentals of MOSFET and IGBT Gate Driver
    Circuits", SLUA618–March 2017–Revised SLUP169–April 2002,
    2017.
    [11] U. Badstuebner, J. Biela, B. Faessler, D. Hoesli and J. W. Kolar, "An
    optimized 5 kW, 147W/in3 telecom phase-shift DC-DC converter with
    magnetically integrated current doubler", Proc. 24th IEEE Appl. Power
    Electron. Conf., pp. 21-27, 2009.
    [12] U. Badstuebner, J. Biela and J. W. Kolar, "An optimized 99% efficient
    5 kW phase-shift PWM DC-DC converter for data centers and telecom
    applications", Proc. Int. Power Electron. Conf., pp. 626-634, 2010.
    [13] U. Badstuebner, J. Biela and J. W. Kolar, "Design of an 99%-efficient
    phase-shift PWM DC-DC converter for telecom applications", Proc.
    25th IEEE Appl. Power Electron. Conf. Expo., pp. 773-780, 2010-Feb.
    [14] U. Badstuebner, J. Biela, D. Christen and J. W. Kolar, "Optimization
    of a 5-kW telecom phase-shift DC-DC converter with magnetically
    integrated current doubler", IEEE Trans. Ind. Electron., vol. 58, no. 10,
    pp. 4736-4745, Oct. 2011.
    [15] Y. Xiao, H. Shah, T. P. Chow, R. J. Gutmann, “Analytical modeling
    and experimental evaluation of interconnect parasitic inductance on
    MOSFET switching characteristics”, Proc. Appl. Power Electron.
    Conf. Expo., vol. 1, pp. 516-521, 2004.
    [16] Y. Q. Shen, J. Jiang, Y. Xiong, Y. Deng, X. N. He, “Parasitic inductance
    effects on the switching loss measurement of power semiconductor
    devices”, IEEE Int. Symp. Ind. Electron., vol. 2, pp. 847-852, Jul. 2006.
    [17] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, “Analytical loss model of power
    MOSFET,” IEEE transactions on power electronics, vol. 21, no. 2, pp.
    310–319, 2006.[18] T. Meade, D. OSullivan, “Parasitic inductance effect on switching
    losses for a high frequency DC–DC converter”, Proc. Appl. Power
    Electron. Conf. Expo., pp. 3-9, 2008.
    [19] Z. Chen, D. Boroyevich, R. Burgos, “Experimental parametric study
    of the parasitic inductance influence on MOSFET switching
    characteristics”, Proc. IEEE Int. Power Electron. Conf., pp. 164-169,
    2010-Jun.
    [20] I. Castro, J. Roig, R. Gelagaev, B. Vlachakis, F. Bauwens, D. G. Lamar,
    and J. Driesen, “Analytical switching loss model for superjunction
    MOSFET with capacitive nonlinearities and displacement currents for
    dc–dc power converters,” IEEE Transactions on Power Electronics, vol.
    31, no. 3, pp. 2485–2495, 2016.
    [21] J. Wang, H. S. Chung, R. T. Li, “Characterization and Experimental
    assessment of the effects of parasitic elements on the MOSFET
    switching performance”, IEEE Trans. Power Electron., vol. 28, no. 1,
    pp. 573-590, Jan. 2013.
    [22] D. Christen, J. Biela, “"Analytical switching loss modeling based on
    datasheet parameters for MOSFETs in a half-bridge”, IEEE Trans.
    Power Electron., vol. 34, no. 4, pp. 3700-3710, Apr. 2019.
    [23] Yucheng Ying, “Device Selection Criteria----Based on Loss Modeling
    and Figure of Merit”, M. S. Thesis, Virginia Polytechnic Insitute and
    State University, March, 2008
    [24] R. Redl, L. Balogh, D. W Edwards, "Switch transitions in the
    softswitching full-bridge pwm phase-shift dc/dc converter: analysis
    and improvements", Proceedings of INTELEC '93, pp. 350-357.
    [25] R. Redl, L. Balogh, D. W. Edwards, "Optimum ZVS full-bridge dc/dc
    converter with PWM phase-shift control: Analysis design
    considerations and experimental results", Proc. IEEE Appl. Power
    [26] Redl, N. O. Sokal, L. Balogh, "A novel soft switching full bridge dc/dc
    102
    converter: analysis design considerations and experimental results at
    1[27] Ruan, X.; Liu, F. An Improved ZVS PWM Full-bridge Converter with
    Clamping Diodes. In Proceedings of the 2004 35th Annual IEEE
    Power Electronics Specialists Conference, Aachen, Germany, 20–25
    June 2004; Volume 2, pp. 1476–1481.
    [28] P. O. Lauritzen, C. L. Ma, "A simple diode model with reverse
    recovery", JEEE Trans. Power Electron., vol. 6, pp. 188-191, Apr.
    1991.
    [29] B. Tien, C. Hu, "Determination of carrier lifetime from rectifier ramp
    recovery waveform", ¡EEE Trans. Electron Devices, vol. 9, no. 10, pp.
    553-555, Oct. 1988.
    [30] A. Huang, "Hard Commutation of Power MOSFET. OptiMOS™ FD
    200 V / 250 V" in Application Note AN 2014-03 V1.0, Infineon, 2014
    [31] MÖßLACHER, C.; OLIVIER, G. Improving efficiency of
    synchronous rectification by analysis of the MOSFET power loss
    mechanism. Infineon Technologies, Mar, 2012.
    [32] O. Arakawa, T. Yamada, and R. Hiramatsu, “Magnetic Snubber Using
    Amorphous Saturable Reactor-Amorphous Beads,” in Proc. of the 3rd
    Ann. IEEE Appl. Power Electron. Conf. and Exp. (APEC ’88), 1988,
    pp. 334–340.
    [33] H. Mao, J. A. Abu-Qahouq, W. Qiu, Y. Wen, and I. Batarseh, "Lossless
    snubber circuits for current doubler rectifiers to reduce reverserecovery
    losses," in The 29th Annual Conference of the IEEE
    Industrial Electronics Society (IECON '03), vol. 3, 2-6 Nov. 2003, pp.
    2639-2644Vol.3.
    [34] R. Liu, “Comparative study of snubber circuits for DC–DC converters
    utilized in high power off-line power supply applications,” in Proc.
    IEEE APEC’99, 1999, pp. 821–826.
    103
    [35] R. Perret, Power electronics semiconductor devices. John Wiley &
    Sons, 2013
    [36] J. Reinert, A. Brockmeyer, R.W. De Doncker, “Calculation of Losses
    in Ferroand Ferrimagnetic Materials Based on the Modified Steinmetz
    Equation”, Industry Applications Conference, 1999. Thirty-Fourth
    IAS Annual Meeting. Vol. 3, pg. 2087- 2092.
    [37] P. L. Dowell, “Effects of eddy currents in transformer windings,” Proc.
    Inst. Elect. Eng., vol. 113, no. 8, pp. 1387–1394, Aug. 1966.5 kW 100 kHz", IEEE PESC Rec., pp. 162-172, 1990.

    無法下載圖示 全文公開日期 2026/02/05 (校內網路)
    全文公開日期 2026/02/05 (校外網路)
    全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE