簡易檢索 / 詳目顯示

研究生: 鄭群禾
Chun-ho Cheng
論文名稱: 稻殼灰為矽源的A型沸石合成研究
Utilizing Rice Husk Ash as Silicon Source to Synthesize Type A Zeolite
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 萬本儒
Ben-Zu Wan
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 稻殼灰沸石分子篩
外文關鍵詞: RHA, A Zeolite, molecular sieve
相關次數: 點閱:138下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣年產稻殼約30萬噸,稻殼可燃燒作為熱源,燃燒後的稻殼灰含有高量的二氧化矽,是很好的資源,然而在台灣稻殼灰多以掩埋處理,殊為可惜。本研究旨在開發稻殼灰的用途,萃取其中的二氧化矽來生產有經濟價值的A型沸石。
A型沸石擁有很高的陽離子交換及吸水能力,目前最大的用途就是作為洗衣粉添加劑及乾燥劑,它的陽離子交換能力也非常適合用來保護環境,如去除廢水中的有害陽離子,包括核廢水中的輻射性陽離子。
本研究分成三大部分,其一為萃取稻殼灰中的二氧化矽並建立其數學模型;其二為用稻殼灰萃取液為矽源合成A型沸石並進行中間及最終產品性質的鑑定,以了解合成過程中的變化;其三為以不同矽源(稻殼灰、TEOS與矽酸鈉)合成A型沸石並比較其差異。
本研究結合縮合模式、一階反應速率式及二階反應速率衰退式,成功的推導出一個可精準描述由稻殼灰萃取二氧化矽的數學模式,此模式可預測在不同溫度及不同萃取時間下的二氧化矽萃取率。
以稻殼灰為矽源合成的A型沸石其結晶度可達80 %。合成的過程可分為誘導期、過渡期及成長期,本研究成功的推導一個數學關係式,可預測在不同合成時間及溫度下的結晶度。
經研究發現,以稻殼灰萃取液合成的A型沸石,其吸水率與結晶度成直線正比關係,吸水速率及最大吸水量在相對濕度為49-64 %之間不受濕度的影響。結晶度為80 %的A型沸石其最大吸水量為21 %,乾燥的A型沸石在相對濕度49 %下,僅需40分鐘吸水量即達飽和。
另研究以TEOS與矽酸鈉為矽源合成A型沸石並與以稻殼灰萃取液所合成的A型沸石進行比較,得到的結晶度分別為81.7 %(稻殼灰)、78.6 %(矽酸鈉)及26.5 %(TEOS)。以稻殼灰合成的A型沸石中有約11.5 %的氧化物雜質,其它二個矽源的產品則無。以稻殼灰為矽源所合成的A型沸石,其陽離子交換能力略低於以矽酸鈉所合成者,但遠大於以TEOS合成的A型沸石。由稻殼灰合成的A型沸石,其粒徑較大,約為以矽酸鈉所合成者大約3倍。


Taiwan produces about 300,000 tons of rice husk per year. Rice husk can be burned to supply heat. The ash from the burning contains significant amount of silica which makes the ash a valuable resource. Nevertheless, resource is often wasted by burying in the field. The purpose of this research is to develop a way of utilizing the rice husk ash (RHA) by extracting the silica from it and used silica to synthesize type-A zeolite.
Type-A zeolite has the highest ion-exchange capability among zeolites, and is also remarkable in capability in absorbing moisture. The greatest applications of type A zeolite is to use as an additive in detergent and as a drying reagent. The cation-exchange capability of type-A zeolite makes it especially suitable to solve environmental problems, such as removing harmful cations, including radio active cations, from waste water.
The contents of this studied can be classified into three parts, namely extracting silica from RHA and building a mathematical model for it, utilizing the extracted silica to synthesize type-A zeolite and examining the process of the synthesis, and finally, comparing the differences among the zeolites synthesized from different silicon sources (RHA, sodium silicate, and TEOS).
An extraction model based on shrinking core, first order reaction and second order reactivity decay was developed. The model can precisely predict the fraction of silica in RHA extracted with respect to extraction time and temperature.
The maximum crystallinity of the zeolite synthesized from RHA was found to be 80%. The crystallization process could be divided into three periods, the induction, the transition, and the crystal growth periods. A mathematical model was developed to describe the relation between the crystallinity and synthesis time at varied temperature.
This study revealed that moisture absorbing capability of the RHA-zeolite increased linearly with the crystallinity of the zeolites. Under the condition of 49-64% relative humidity, the rate and maximum of moisture absorption was not affected by the moisture. The maximum amount of moisture a RHA-zeolite could absorbed was about 21% of the weight of the zeolite, and it took about 40 minutes to reach the maximum under 49% relative humidity.
Other than RHA, this investigation also used TEOS and sodium silicate to synthesize type-A zeolite. The resulting zeolites were compared. The crystallinity of the zeolites synthesized from varied silicon source was found to be 81.7% (RHA), 78.6% (sodium silicate) and 26.5% (TEOS). In addition, the RHA-zeolite was found to contain 11.5% impurities, while the other two zeolites had none. The ion-exchange capability of RHA-zeolite was about the same as that of sodium-silicate-zeolite, and was far greater than that of TEOS-zeolite. The size of the RHA-zeolite was found to be 2.3 nm which was about 3 times larger than that of sodium-silicate-zeolite.

摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 稻殼 4 2.1.1 構造與物性 4 2.1.2 化學組成 5 2.1.3 高溫熱分解 6 2.1.4 矽的分布 9 2.2 稻殼灰 13 2.2.1 組成與特性 13 2.2.2 矽之型態 15 2.2.3 稻殼灰的應用與矽取得 18 2.2.3.1 燃燒法 19 2.2.3.2 溶液萃取法 19 2.3 沸石 20 2.3.1 簡介 20 2.3.2 結構 26 2.3.2.1 初級結構單元 27 2.3.2.2 次級結構單元 28 2.3.2.3 其他特殊結構單元 31 2.3.3 合成機制 36 2.3.3.1 固相轉換機制 36 2.3.3.2 液相轉換機制 38 2.3.4 影響合成的因素 40 第三章 實驗方法與設備 43 3.1 藥品與設備 43 3.1.1 藥品 43 3.1.2 儀器設備 44 3.2 實驗方法 45 3.2.1 稻殼灰中矽的萃取 45 3.2.2 A型沸石的合成 47 3.2.3 矽源的影響 48 3.2.4 陽離子交換容量(Cation exchange capacity, CEC) 49 3.2.5 實驗流程圖 50 3.3 儀器介紹 51 3.3.1 感應耦合電漿原子發射光譜儀(ICP-AES) 51 3.3.2 X光繞射儀(XRD) 51 3.3.3 熱重分析儀(TGA) 52 3.3.4 粒徑分析儀(PSA) 52 3.3.5 掃描式電子顯微鏡(SEM) 53 3.3.6 能量分散光譜儀(EDS) 53 第四章 結果與討論 54 4.1 稻殼灰與矽的萃取 54 4.1.1 稻殼的TGA分析 54 4.1.2 稻殼灰的成分及矽的萃取 55 4.1.3 萃取速率模式 59 4.2 以稻殼灰為矽源合成A型沸石 66 4.2.1 結晶速率分析 66 4.2.2 A型沸石的吸水性 72 4.2.3 A型沸石合成過程的外觀變化 75 4.2.4 A型沸石合成過程的粒徑變化 76 4.2.5 交換當量比與離子交換度 77 4.3 比較不同矽源合成的A型沸石 79 4.3.1 結晶度的差異 79 4.3.2 A型沸石組成的差異 79 4.3.3 沸石外觀的差異 82 4.3.4 沸石除濕能力的差異 83 4.3.5 沸石陽離子交換能力的差異 84 第五章 結論 86 第六章 參考文獻 88

FAOSTAT. Browse data / Production.2014 Retrieved Apr. 19, 2014; Available from: http://faostat3.fao.org/faostat-gateway/go/to/home/E
行政院農業委員會, 農業統計資料查詢, 2014 Retrieved Apr. 19, 2014; Available from: http://agrstat.coa.gov.tw/sdweb/public/maintenance/Announce.aspx
行政院環境保護署, 露天燃燒相關法規, 2009 Retrieved Apr. 26 2014; Available from: http://61.219.187.109/OB/index.asp
李子純,「紅壤稻田生產力改進試驗」,中華農業研究,1982,31[1],71-88
李瑋松、呂昀陞、陳美杏,「稻草在秀珍菇栽培之應用」,台灣農業研究,2012,61[2],90-99
Kalderis, D., S. Bethanis, P. Paraskeva, & E. Diamadopoulos, “Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times”, Bioresour. Technol., 99 (2008) 6809-6816.
蕭述三、馮彥碩、許嘉仁,「稻稈固態衍生燃料成型性分析」,中國機械工程學會第二十四屆全國學術研討會論文集,民國96年
Chou, C-S, S-H Lin, & W-C Lu, “Preparation and characterization of solid biomass fuel made from rice straw and rice bran”, Fuel Process. Technol., 90 (2009) 980-987.
司洪濤,「廢棄物衍生燃料新技術與應用成功案例介紹」,台肥季刊,2013,54[1],Retrieved Apr. 27, 2014; Available from: http://www.taifer.com.tw/search/054001/index.asp
Nour, A M, Rice straw and rice hulls in feeding ruminants in Egypt, 1986 Retrieved Apr. 27, 2014; Available from: http://www.fao.org/wairdocs/ilri/x5494e/x5494e07.htm
International Zeolite Association, 2014 Retrieved Apr. 30, 2014; Available from: http://www.iza-online.org/default.htm
Liu, C., X. Gao, Z. Zhang, H. Zhang, S. Sun, & Y. Deng, “Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction”, Appl. Catal. A-Gen., 264 (2004) 225-228.
Konno, H., T. Tago, Y. Nakasaka, R. Ohnaka, J. Nishimura, & T. Masuda, “Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha”, Microporous Mesoporous Mater., 175 (2013) 25-33.
Vizcaino, A.J., A. Carrero, & J.A. Calles, “Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts”, Int. J. Hydrogen Energy, 32 (2007) 1450-1461.
Horcajada, P., A. Ramila, J. Perez-Pariente, & M. Vallet-Regi, “Influence of pore size of MCM-41 matrices on drug delivery rate”, Microporous Mesoporous Mater., 68 (2004) 105-109.
Soldatkin, O.O., I.S. Kucherenko, S.V. Marchenko, B. Ozansoy Kasap, B. Akata, A.P. Soldatkin, & S.V. Dzyadevych, “Application of enzyme/zeolite sensor for urea analysis in serum”, Mater. Sci. Eng., C, 42 (2014) 155-160.
Azizi, S. N., S. Ranjbar, J. B. Raoof, & E. Hamidi-Asil, “Preparation of Ag/NaA zeolite modified carbon paste electrode as a DNA biosensor”, Sens. Actuator B-Chem., 181 (2013) 319-325.
Yi, H., H. Deng, X. Tang, Q. Yu, X. Zhou, & H. Liu, “Adsorption equilibrium and kinetics for SO_2, NO, CO_2 on zeolites FAU and LTA”, J. Hazard. Mater., 203-204 (2012) 111-117.
Liu, H., S. Peng, L. Shu, T. Chen, T. Bao, & R. L. Frost, “Effect of Fe_3 O_4 addition on removal of ammonium by zeolite NaA”, J. Colloid Interface Sci., 390 (2013) 204-210.
Hui, K.S., & C.Y.H. Chao, “Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents”, J. Hazard. Mater., B137 (2006) 401-409.
Lopez, A., I. de Marco, B.M. Caballero, M.F. Laresgoiti, A. Adrados, & A. Aranzabal, “Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud”, Appl. Catal. B-Environ., 104 (2011) 211-219.
Yilmaz, B., N. Trukhan, & U. Muller, “Industrial outlook on zeolites and metal organic frameworks”, Chin. J. Catal., 33 (2012) 3-10.
Virta, R. L., “Zeolites – 2012”, Minerals Yearbook: Volume I. -- Metals and Minerals, Robert L. Virta, U.S. Geological Survey, (2013), Available from: http://minerals.usgs.gov/
Juliano, B.O., & D.B. Bechtel, “The rice grain and its gross composition”, Rice: Chemistry and Technology, 2^nd ed, B.O. Juliano, Am Assoc. Cereal Chem., St Paul, (1985) 17-57.
Houston, D. F., “Rice hulls”, Rice Chemistry and Technology, D. F. Houston, Am. Assoc. Cereal Chem., St Paul, (1972) 301-352.
Chopra, S.K., “Cementitious binder from rice husk – An overview”, Cement Res. Inst. India, New Delhi, (1981) 25.
Juliano, B.O., “Rice hull and rice straw”, Rice: Chemistry and Technology, 2^nd ed, B.O. Juliano, Am Assoc. Cereal Chem., St Paul, (1985) 689-755.
Sharma, N.K., Wendell S. Williams, & A. Zangvil, “Formation and structure of silicon carbide whiskers from rice hulls”, J. Am. Ceram. Soc., 67 (1984) 715-720.
Patel, M., A. Karera, & P. Prasanna, “Effect of thermal and chemical treatments on carbon and silica contents in rice husk”, J. Mater. Sci., 22 (1987) 2457-2464.
Chakraverty, A., P. Mishra, & H.D. Banerjee, “Investigation of thermal decomposition of rice husk”, Thermochim. Acta, 94 (1985) 267-275.
Liou, T-H, “Evolution of chemistry and morphology during the carbonization and combustion of rice husk”, Carbon, 42 (2004) 785-794.
Mansaray, K. G., & A. E. Ghaly, “Thermal degradation of rice husks in nitrogen atmosphere”, Bioresour. Technol., 65 (1998) 13-20.
Williams, P. T., & S. Besler, “The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor”, Fuel, 72[2] (1993) 151-159.
Hamad, M.A., “Thermal characteristics of rice hulls”, J. Chem. Tech. Biotechnol., 31 (1981) 624-626.
Sharma, A., & T. R. Rao, “Kinetics of pyrolysis of rice husk”, Bioresour Technol., 67 (1999) 53-59.
Yoshida, S., Y. Ohnishi, & K. Kitagishi, “Histochemistry of silicon in rice plant: II. Localization of silicon within rice tissues.”, Soil Sci. Plant Nutr., 8[1] (1962) 36-41.
Yoshida, S., Y. Ohnishi, & K. Kitagishi, “Histochemistry of silicon in rice plant: III. The presence of cuticle-silica double layer in the epidermal tissue”, Soil Sci. Plant Nutr., 8[2] (1962) 1-5.
Krishnarao, R.V., & M.M. Godkhindi, “Distribution of silica in rice husks and its effect on the formation of silicon carbide”, Ceram. Int., 18 (1992) 243-249.
Park, B-D, S. G. Wi, K. H. Lee, A. P. Singh, T-H Yoon, & Y. S. Kim, “Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques”, Biomass Bioenerg., 25 (2003) 319-327.
Bondioli, F., L. Barbieri, A. M. Ferrari, & T. Manfredini, “Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes”, J. Am. Ceram. Soc., 93(1) (2010) 121-126.
Della, V.P., I. Kuhn, & D. Hotza, “Rice husk ash as an alternate source for active silica production”, Mater. Lett., 57 (2002) 818-821.
Ramezanianpour, A.A., M. M. khani, & G. Ahmadibeni, “The effect of rice husk ash on mechanical properties and durability of sustainable concretes”, Int. J. Civil Eng., 7[2] (2009) 83-91.
Boateng, A.A., & D.A. Skeete, “Incineration of rice hull for use as a chmentitious material: The guyana experience”, Cem. Concr. Res., 20 (1990) 795-802.
Chandraskhar, S., P. N. Pramada, & L. Praveen, “Effect of organic acid treatment on the properties of rice husk silica”, J. Mater. Sci., 40 (2005) 6535-6544.
Chandrasekhar, Sathy, P. N. Pramada, & Jisha Majeed, “Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash”, J. Mater. Sci., 41 (2006) 7926-7933.
Chandrasekhar, S., P. N. Pramada, P. Raghavan, K. G. Satyanarayana, T. N. Gupta, “Microsilica from rice husk as a possible substitute for condensed silica fume for high performance concrete”, J. Mater. Sci. Lett., 21 (2002) 1245-1247.
Fuad, M. Y. Ahmad, & I. Yaakob, “Density measurement of rice husk ash filler particles in polypropylene composites”, Polym. Test., 12 (1993) 107-112.
Real, C., M. D. Alcala, & J. M. Criado, “Preparation of silica from rice husks”, J. Am. Ceram. Soc., 79[8] (1996) 2012-2016
Krishnarao, R.V., J. Subrahmanyam, & T. J. Kumar, “Studies on the formation of black particles in rice husk silica ash”, J. Eur. Ceram. Soc., 21 (2001) 99-104.
Naiya, T. K., A. K. Bhattacharya, S. Mandal, & S. K. Das, “The sorption of Lead(II) ions on rice husk ash”, J. Hazard. Mater., 163 (2009) 1254-1264.
Srivastava, V. C., I. D. Mall, & I. M. Mishra, “Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA”, J. Hazard. Mater., 134 (2006) 257-267.
The quartz page, Overview of silica polymorphs, Jan. 12, 2014 Retrieved May 25, 2014; Available from: http://www.quartzpage.de/index.html
Hamad, M.A., & I.A. Khattab, “Effect of the combustion process on the structure of rice hull silica”, Thermochim. Acta, 48 (1981) 343-349.
Hanafi, S., S.A. Abo-El-Enein, D.M. Ibrahim, & S.A. El-Hemaly, “Surface properties of silicas produced by thermal treatment of rice-husk ash”, Thermochim. Acta, 37 (1980) 137-143.
Ibrahim, D.M., S.A. El-Hemaly, & F.M. Abdel-Kerim, “Study of rice-husk ash silica by infrared spectroscopy”, Thermochim. Acta, 37 (1980) 307-314.
Shinohara, Y., & N. Kohyama, “Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating”, Ind. Health, 42 (2004) 277-285.
Venezia, A. M., V. L. Parola, A. Longo, & A. Martorana, “Effect of alkali ions on the amorphous to crystalline phase transition of silica”, J. Solid State Chem., 161 (2001) 373-378.
Nakata, Y., M. Suzuki, T. Okutani, M. Kikuchi, & T. Akiyama, “Preparation and properties of SiO_2 from rice hulls”, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 97[8] (1989) 842-849.
Krishnarao, R. V., “Formation of SiC whiskers from rice husk silica-carbon black mixture: effect of preheat treatment”, J. Mater. Sci. Lett., 12 (1993) 1268-1271.
Krishnarao, R. V., & M. M. Godkhindi, “Studies on the formation of sic whiskers from pulverized rice husk ashes”, Ceram. Int., 18 (1992) 35-42.
Krishnarao, R. V., M. M. Godkhindi, P. G. l. Mukunda, & M. Chakraborty, “Direct pyrolysis of raw rice husks for maximization of silicon carbide whisker formation”, J. Am. Ceram. Soc., 74[11] (1991) 2869-2875.
Krishnarao, R. V., & Y. R. Mahajan, “Formation of SiC whiskers from raw rice husks in argon atmosphere”, Ceram. Int., 22 (1996) 353-358.
Kumar, A., K. Mohanta, D. Kumar, & O. Parkash, “Properties and industrial applications of rice husk: A review”, IJETAE, 2[10] (2012) 86-90.
Chandrasekhar, S., K. G. Satyanarayana, P. N. Pramada, & P. Raghavan, “Review processing, properties and applications of reactive silica from rice husk – an overview” J. Mater. Sci., 38 (2003) 3159-3168.
Sun, L., & K. Gong, “Silicon – Based materials from rice husks and their applications”, Ind. Eng. Chem. Res., 40 (2001) 5861-5877.
Priyadharshini, J., & T. H. Seran, “Paddy husk ash as a source of potassium for growth and yield of cowpea (Vigna unguiculata L.)”, J. Agr. Sci., 4[2] (2009) 67-76.
Yalcin, N., & V. Sevinc, “Studies on silica obtained from rice husk”, Ceram. Int., 27 (2001) 219-224.
Umeda, J., K. Kondoh, & Y. Michiura, “Process prameters optimization in preparing high-purity amorphous silica originated from rice husks”, Mater. Trans., 48[12] (2007) 3095-3100.
Umeda, J., & K. Kondoh, “High-Purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal”, Ind. Crop. Prod., 32 (2010) 539-544.
Kalapathy, U., A. Proctor, & J. Shultz, “A simple method for production of pure silica from rice hull ash”, Bioresour. Technol., 73 (2000) 257-262.
An, D., Y. Guo, Y. Zhu, & Z. Wang, “A green route to preparation of silica powders with rice husk ash and waste gas”, Chem. Eng. J., 162 (2010) 509-514.
Liu, Y., Y. Guo, Y. Zhu, D. An, W. Gao, Z. Wang, Y. Ma, & Z. Wang, “A sustainable route for the preparation of activated carbon and silica from rice husk ash”, J. Hazard. Mater., 186 (2011) 1314-1319.
Liu, Y., Y. Guo, W. Gao, Z. Wang, Y. Ma, & Z. Wang, “Simultaneous preparation of silica and activated carbon from rice husk ash”, J. Clean. Prod., 32 (2012) 204-209.
Azizi, S. N., & M. Yousefpour, “Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template”, J. Mater. Sci., 45 (2010) 5692-5697.
Ghasemi, Z., H. Younesi, & H. Kazemian, “Synthesis of nanozeolite sodalite from rice husk ash without organic additives”, Can. J. Chem. Eng., 89 (2011) 601-608.
Ghasemi, Z., & H. Younesi, “Preparation of Free-Template Nanometer-Sized Na-A and –X zeolite from rice husk ash”, Waste Biomass Valor., 3 (2012) 61-74.
Breck, D. W., “Mineral zeolites”, Zeolite molecular sieves: structure, chemistry, and use, Donlad W. Breck, John Wiley & Sons, London, (1974) 186-244.
Flanigen, E. M., “Zeolites and molecular sieves an historical perspective”, Introduction to Zeolite Science and Practice, H. Van Bekkum, E.M. Flanigen, & J.C. Jansen, Elsevier, Amsterdam, (1991) 13-34.
Breck, D. W., “The synthetic zeolites”, Zeolite molecular sieves: structure, chemistry, and use, Donlad W. Breck, John Wiley & Sons, London, (1974) 245-378.
Milton, R. M., “Molecular sieve science and technology: A historical perspective”, Zeolite Synthesis, Mario L. Occelli, & Harry E. Robson, ACS Symp. Ser., (1989) 1-10.
Cundy, C. S., & P. A. Cox, “The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time”, Chem. Rev., 103 (2003) 663-701.
Maesen, T., “The zeolite scene – An overivew”, Introduction to Zeolite Science and Practice, 3^rd ed, Jiri Cejka, Herman van Bekkum, A. Corma, & F. Schueth, Elsevier, (2007) 1-12.
Yu, J., “Synthesis of zeolites”, Introduction to zeolite science and practice, 3^rd ed, Jiri Cejka, Herman van Bekkum, A. Corma, & F. Schueth, Elsevier, (2007) 39-103.
Cundy, C. S., & P. A. Cox, “The hydrothermal synthesis of zeoliltes: Precursors, intermediates and reaction mechanism”, Microporous Mesoporous Mater., 82 (2005) 1-78.
Breck, D. W., “Crystalline molecular sieves”, J. Chem. Educ., 41 (1964) 678-689.
Keer, G. T., “Chemistry of crystalline aluminosilicates. I. factors affecting the formation of zeolite A”, J. Phys. Chem. B, 70 (1966) 1047-1050.
Rios, C. A., C. D. Williams, & C. L. Roberts, “A comparative study of two methods for the synthesis of fly ash-based sodium and postassium type zeolites”, Fuel, 88 (2009) 1403-1416.
Machado, N. R. C. F., & D. M. M. Miotto, “Synthesis of Na–A and –X zeolites from oil shale ash”, Fuel, 84 (2005) 2289-2294.
Fan, W., S. Shirato, F. Gao, M. Ogura, & T. Okubo, “Phase selection of FAU and LTA zeolites by controlling synthesis parameters”, Microporous Mesoporous Mater., 89 (2006) 227-234.
Yang, X., D. Albrecht, & J. Caro, “Revision of Charnell’s procedure towards the synthesis of large and uniform crystals of zeolites A and X”, Microporous Mesoporous Mater., 90 (2006) 53-61.
Liu, X-D, Y-P Wang, X-M Cui, Y. He, & J. Mao, “Infuence of synthesis parameters on NaA zeolite crystals”, Powder Technol., 243 (2013) 184-193.
Szostak, R., “Hydrothermal zeolite synthesis”, Molecular Sieves: Principles of synthesis and identification, R. Szostak, Van Nostrand Reinhold, New York, (1989) 51-132.
Szostak, R., “Molecular sieves for use in catalysis”, Molecular Sieves: Principles of synthesis and identification, R. Szestak, Van Nostrand Reinhold, New York, (1989) 1-50.
Breck, D. W., “Introduction”, Zeolite molecular sieves: structure, chemistry, and use, Donald W. Breck, John Wiley & Sons, London, (1974) 1-28.
Komatsu Laboratory, ゼオライト, May 27, 2014 Retrieved June 8, 2014; Available from: http://www.cms.titech.ac.jp/~komatsu/index.htm
Baerlocher, C., L.B. McCusker, & D.H. Olson, Atlas of zeolite framework types, 6^th ed, Elsevier, (2007).
Breck, D. W., “Structure of zeolites”, Zeolite molecular sieves: structure, chemistry, and use, Donald W. Breck, John Wiley & Sons, London, (1974) 29-185.
Politi, G., Struttur, Retrieved June 10, 2014; Available from: http://www.cittanovaonline.it/frpoliti/home.htm.
徐如人、龐文琴、于吉紅、霍啟升、陳接勝,「分子篩與多孔材料化學」,科學出版社,北京,(2004)。
Ciric, J., “Kinetics of zeolite a crystallization”, J. Colloid Interface Sci., 28 (1968) 315-324.
Zhdanov, S.P., “Some problems of zeolite crystallization”, Molecular Sieve Zeolites – I, Robert F. Gould, ACS Adv. Chem. Ser., 101 (1971) 20-43.
Bosnar, S., & Boris S., “Kinetic analysis of crystal growth of zeolite A”, Croat. Chem. Acta, 75[3] (2002) 663-681.
Bosnar, S., T. Antonic, J. Bronic, & B. Subotic, “Mechanism and kinetics of the growth of zeolite microcrystals. Part 2: Influence of sodium ions concentration in the liquid phase on the growth kinetics of zeolite A microcrystals”, Microporous Mesoporous Mater., 76 (2004) 157-165.
Bosnar, S., T. Antonic-Jelic, J. Bronic, I. Krznaric, & B. Subotic, “Influence of anions on the kinetics of zeolite A crystallization: a population balance analysis”, J. Cryst. Growth, 267 (2004) 270-282.
Liu, Q., & A. Navrotsky, “Synthesis of nitrate sodalite: An in situ scanning calorimetric study”, Geochim. Cosmochim. Acta, 71 (2007) 2072-2078.
Alfaro, S., C. Rodriguez, M.A. Valenzuela, & P. Bosch, “Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template”, Mater., Lett., 61 (2007) 4655-4658.
Jafari, M., A. Nouri, M. Kazemimoghadam, & T. Mohammadi, “Investigations on hydrothermal synthesis parameters in preparation of nanoparticles of LTA zeolite with the aid of TMAOH”, Powder Technol., 237 (2013) 442-449.
Zhang, X., D. Tang, & G. Jiang, “Synthesis of zeolite NaA at room temperature: The effect of synthesis parameters on crystal size and its size distribution”, Adv. Powder Technol., 24 (2013) 689-696.
Bara, T., P. France, & P. G. Smirniotis, “Control of crystal size and distribution of zeolite A”, Ind. Eng. Chem. Res., 40 (2001) 1133-1139.
Hu, Y., C. Liu, Y. Zhang, N. Ren, & Y. Tang, “Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size”, Microporous Mesoporous Mater., 119 (2009) 306-314.
Davies, A. T., G. Sankar, C. R. A. Catlow, & S. M. Clark, “Following the crystallization of microporous solids using EDXRD techniques”, J. Phys. Chem. B, 101 (1997) 10115-10120.
Grizzetti, R., & G. Artioli, “Kinetics of nucleation and growth of zeolite LTA from clear solution by in situ and ex situ XRPD”, Microporous Mesoporous Mater., 54 (2002) 105-112.
Baser, H., T. Selvam, J. Ofili, R. Herrmann, & W. Schwieger, “In-situ ultrasonic methods for monitoring the hydrothermal synthesis of LTA-type zeolite from colloidal solutions”, From Zeolites to Porous MOF Materials – the 〖40〗^th Anniversary of International Zeolite Conference, R. Xu, Z. Gao, J. Chen, & W. Yan, (2007) 480-486.
Gualtieri, A., P. Norby, G. Artioli, & J. Hanson, “Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites”, Phys. Chem. Minerals, 24 (1997) 191-199.
Hu, H. C., W. H. Chen, & T. Y. Lee, “Synthesis kinetics and particle size distribution of zeolite A”, J. Cryst. Growth, 108 (1991) 561-571.
Wikipedia, X-ray crystallography, June 11, 2014 Retrieved June 22, 2014; Available from: http://en.wikipedia.org/wiki/X-ray_crystallography
James, J., & M. S. Rao, “Silica from rice husk through thermal decomposition”, Thermochim. Acta, 97 (1986) 329-336.
Kordatos, K., S. Gavela, A. Ntziouni, K. N. Pistiolas, A. Kyristsi, & V. Kasselouri-Rigopoulou, “Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash”, Microporous Mesoporous Mater., 115 (2008) 189-196.
Ndazi, B.S., S. Karlsson, J.V. Tesha, & C.W. Nyahumwa, “Chemical and physical modifications of rice husks for use as composite panels”, Composites: Part A, 38 (2007) 925-935.
Okunev, A.G., S.A. Shaurman, A.F. Danilyuk, Yu.I. Aristov, G. Bergeret, & A. Renouperz, “Kinetics of the SiO_2 aerogel dissolution in aqueous NaOH solution: experiment and model”, J. Non-Cryst. Solids, 260 (1999) 21-30.
Icenhower, J. P., & P. M. Dove, “The dissolution kinetics of amorphous silica into sodium chloride solution: Effects of termperature and ionic strength”, Geochim. Cosmochim. Acta, 64[24] (2000) 4193-4203.
Fertani-Gmati, M., & M. Jemal, “Thermochemistry and kinetics of silica dissolution in NaOH aqueous solution”, Thermochim. Acta, 513 (2011) 43-48.
中國科學院大連化學物理研究所分子篩組,「沸石分子篩」,科學出版社,北京,(1978)。
Petkowicz, D. I., R. T. Rigo, C. Radtke, S. B. Pergher, & J. H.Z. d. Santos, “Zeolite NaA from Brazilian chrysotile and rice husk”, Microporous Mesoporous Mater., 116 (2008) 548-554.
Wikipedia, Ionic radius, May 13, 2014 Retrieved July 2, 2014; Available from: http://en.wikipedia.org/wiki/Ionic_radius
Wikipedia, Ammonium, May 9, 2014 Retrieved July 2, 2014, Available from: http://en.wikipedia.org/wiki/Ammonium

QR CODE