簡易檢索 / 詳目顯示

研究生: 吳進儒
Chin-Ju Wu
論文名稱: 可調式客製化器械與膝關節韌帶平衡系統於全人工關節置換術的開發與驗證
Development and In-vitro Experiments of Adjustable Patient Specific Instrumentation and Knee Collateral Ligaments Balancing System in Total Knee Arthroplasty
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭正元
Jeng-Ywan Jeng
林上智
Shang-Chih Lin
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 113
中文關鍵詞: 客製化器械全人工關節置換術運動軸對齊動態平衡感測器
外文關鍵詞: Patient specific instrumentation, Total knee arthroplasty, Kinematic alignment, Balance system
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.3.1 設計運動對齊且可調式客製化器械 3 1.3.2 開發通用型動態平衡感測器械 4 1.3.3 體外實驗驗證 4 1.4 論文架構 5 第二章 文獻回顧 6 2.1 全人工膝關節置換術對齊方式 6 2.1.1 機械對齊(Mechanical alignment,MA) 6 2.1.2 解剖對齊(Anatomic Alignment) 7 2.1.3 調整後的機械對齊(Adjusted Mechanical Alignment) 8 2.1.4 運動對齊(Kinematic alignment,KA) 8 2.2 膝關節壓力感測器 11 2.2.1 機械式壓力感測器 12 2.2.2 電子式壓力感測器 12 2.2.3 整合式壓力感測器 12 第三張 材料與方法 15 3.1 運動對齊式的可調整式PSI設計 17 3.1.1 設計、製作體外實驗用的人工假骨 17 3.1.2 人工假骨裝上治具進行CT掃描 23 3.1.3 重建患者3D模型,做術前規劃 25 3.1.4 設計能可調整式的客製化手術器械 31 3.2 軟組織平衡用壓力感測器開發 41 3.2.1 開發能即時顯示數值的壓力感測系統 41 3.2.2 檢測並校正壓力感測器 46 3.2.3 設計壓力感測器上的壓力平衡機構 48 3.2.4 設計體外實驗用人工膝關節運動模擬機構與側韌帶 50 3.3 體外實驗 55 3.3.1 術前準備 56 3.3.2 脛骨切骨 56 3.3.3 進行內外側壓力平衡 56 3.3.4 股骨切骨 57 3.3.5 術後成果檢測 58 第四章 研究結果 66 4.1 列印模型誤差分析結果 67 4.2 CT重建模型誤差分析結果 69 4.3 PSI定位誤差分析結果 72 4.4 切骨平面誤差分析結果 79 4.5 壓力平衡測試分析結果 81 第五章 討論 84 第六章 結論與未來展望 91 第七章 參考文獻 92

1. Long, W.J., et al., Total knee replacement in young, active patients: long-term follow-up and functional outcome: a concise follow-up of a previous report. J Bone Joint Surg Am, 2014. 96(18): p. e159.
2. Nam, D., R.M. Nunley, and R.L. Barrack, Patient dissatisfaction following total knee replacement: a growing concern? Bone Joint J, 2014. 96-b(11 Supple A): p. 96-100.
3. Allen, M.M. and M.W. Pagnano, Neutral mechanical alignment: Is it Necessary? Bone Joint J, 2016. 98-b(1 Suppl A): p. 81-3.
4. Gromov, K., et al., What is the optimal alignment of the tibial and femoral components in knee arthroplasty? Acta Orthop, 2014. 85(5): p. 480-7.
5. Rivière, C., et al., Alignment options for total knee arthroplasty: A systematic review. Orthop Traumatol Surg Res, 2017. 103(7): p. 1047-1056.
6. Innocenti, B., J. Bellemans, and F. Catani, Deviations From Optimal Alignment in TKA: Is There a Biomechanical Difference Between Femoral or Tibial Component Alignment? J Arthroplasty, 2016. 31(1): p. 295-301.
7. Takahashi, T., J. Ansari, and H.G. Pandit, Kinematically Aligned Total Knee Arthroplasty or Mechanically Aligned Total Knee Arthroplasty. J Knee Surg, 2018. 31(10): p. 999-1006.
8. Ghosh, K.M., et al., Length change patterns of the extensor retinaculum and the effect of total knee replacement. J Orthop Res, 2009. 27(7): p. 865-70.
9. Yim, J.-H., et al., A Comparison of Classical and Anatomical Total Knee Alignment Methods in Robotic Total Knee Arthroplasty: Classical and Anatomical Knee Alignment Methods in TKA. The Journal of Arthroplasty, 2013. 28(6): p. 932-937.
10. Mugnai, R., et al., Can TKA design affect the clinical outcome? Comparison between two guided-motion systems. Knee Surgery, Sports Traumatology, Arthroscopy, 2014. 22(3): p. 581-589.
11. De Muylder, J., et al., Total knee arthroplasty in patients with substantial deformities using primary knee components. Knee Surgery, Sports Traumatology, Arthroscopy, 2015. 23(12): p. 3653-3659.
12. Deep, K., K.K. Eachempati, and S. Apsingi, The dynamic nature of alignment and variations in normal knees. Bone Joint J, 2015. 97-b(4): p. 498-502.
13. Howell, S.M., et al., Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc, 2013. 21(10): p. 2271-80.
14. Eckhoff, D.G., et al., Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am, 2005. 87 Suppl 2: p. 71-80.
15. Dossett, H.G., et al., A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J, 2014. 96-b(7): p. 907-13.
16. Cidambi, K.R., et al., Intraoperative Comparison of Measured Resection and Gap Balancing Using a Force Sensor: A Prospective, Randomized Controlled Trial. J Arthroplasty, 2018. 33(7s): p. S126-s130.
17. Courtney, P.M. and G.C. Lee, Early Outcomes of Kinematic Alignment in Primary Total Knee Arthroplasty: A Meta-Analysis of the Literature. J Arthroplasty, 2017. 32(6): p. 2028-2032.e1.
18. Schiraldi, M., et al., Mechanical and kinematic alignment in total knee arthroplasty. Annals of translational medicine, 2016. 4(7): p. 130-130.
19. Lee, Y.S., et al., Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2017. 25(11): p. 3467-3479.
20. Yoon, J.R., et al., Comparison of kinematic and mechanical alignment techniques in primary total knee arthroplasty: A meta-analysis. Medicine (Baltimore), 2017. 96(39): p. e8157.
21. Ritter, M.A., et al., Preoperative malalignment increases risk of failure after total knee arthroplasty. J Bone Joint Surg Am, 2013. 95(2): p. 126-31.
22. Siston, R.A., et al., Averaging different alignment axes improves femoral rotational alignment in computer-navigated total knee arthroplasty. J Bone Joint Surg Am, 2008. 90(10): p. 2098-104.
23. Hutt, J.R.B., et al., Kinematic TKA using navigation: Surgical technique and initial results. Orthopaedics & Traumatology: Surgery & Research, 2016. 102(1): p. 99-104.
24. Larrainzar-Garijo, R., et al., Dynamic Alignment Analysis in the Osteoarthritic Knee Using Computer Navigation. J Knee Surg, 2017. 30(9): p. 909-915.
25. Budhiparama, N.C., et al., Does Accelerometer-based Navigation Have Any Clinical Benefit Compared with Conventional TKA? A Systematic Review. Clin Orthop Relat Res, 2019. 477(9): p. 2017-2029.
26. Mannan, A. and T.O. Smith, Favourable rotational alignment outcomes in PSI knee arthroplasty: A Level 1 systematic review and meta-analysis. Knee, 2016. 23(2): p. 186-90.
27. Laende, E.K., C.G. Richardson, and M.J. Dunbar, A randomized controlled trial of tibial component migration with kinematic alignment using patient-specific instrumentation versus mechanical alignment using computer-assisted surgery in total knee arthroplasty. Bone Joint J, 2019. 101-b(8): p. 929-940.
28. Ivie, C.B., et al., Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty, 2014. 29(11): p. 2100-3.
29. Thienpont, E., P.E. Schwab, and P. Fennema, A systematic review and meta-analysis of patient-specific instrumentation for improving alignment of the components in total knee replacement. Bone Joint J, 2014. 96-b(8): p. 1052-61.
30. Conteduca, F., et al., Patient-specific instruments in total knee arthroplasty. International orthopaedics, 2014. 38(2): p. 259-265.
31. Thienpont, E., et al., Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee, 2013. 20(6): p. 407-11.
32. Sassoon, A., et al., Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res, 2015. 473(1): p. 151-8.
33. Nam, D., et al., The impact of custom cutting guides on patient satisfaction and residual symptoms following total knee arthroplasty. Knee, 2016. 23(1): p. 144-8.
34. Woon, J.T.K., et al., Outcome of kinematic alignment using patient-specific instrumentation versus mechanical alignment in TKA: a meta-analysis and subgroup analysis of randomised trials. Arch Orthop Trauma Surg, 2018. 138(9): p. 1293-1303.
35. Hommel, H., M.P. Abdel, and C. Perka, Kinematic femoral alignment with gap balancing and patient-specific instrumentation in total knee arthroplasty: a randomized clinical trial. Eur J Orthop Surg Traumatol, 2017. 27(5): p. 683-688.
36. Ishikawa, M., et al., Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty: A case study on a single implant design. Knee, 2015. 22(3): p. 206-12.
37. Konan, S., S. Howell, and S. Oussedik, Alignment Targets in Total Knee Arthroplasty, in Total Knee Arthroplasty: A Comprehensive Guide, E.C. Rodríguez-Merchán and S. Oussedik, Editors. 2015, Springer International Publishing: Cham. p. 145-159.
38. Tuecking, L.R., et al., Clinical validation and accuracy testing of a radiographic decision aid for unicondylar knee arthroplasty patient selection in midterm follow-up. Knee Surg Sports Traumatol Arthrosc, 2020. 28(7): p. 2082-2090.
39. Wan, C., et al., An update on the constitutive relation of ligament tissues with the effects of collagen types. J Mech Behav Biomed Mater, 2015. 50: p. 255-67.
40. Bolstad, K., et al., Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants. Acta Radiol, 2018. 59(9): p. 1110-1118.
41. Barreto, I., et al., Comparison of metal artifact reduction using single-energy CT and dual-energy CT with various metallic implants in cadavers. European Journal of Radiology, 2020. 133: p. 109357.
42. Wellenberg, R.H.H., et al., Metal artifact reduction techniques in musculoskeletal CT-imaging. European Journal of Radiology, 2018. 107: p. 60-69.

無法下載圖示 全文公開日期 2031/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE