簡易檢索 / 詳目顯示

研究生: 李宥霖
Yu-Lin LEE
論文名稱: 具雙向返馳轉換器之主動式電池平衡系統控制策略
Control Strategy of Active Cell-balancing System with Bidirecitonal Flyback Converter
指導教授: 林長華
Chang-Hua Lin
口試委員: 謝冠群
Guan-Chyun Hsieh
劉添華
Tian-Hua Liu
王見銘
Chien-Ming Wang
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 雙向返馳轉換器主動式電池平衡光繼電器預充電技術損耗分析
外文關鍵詞: bidirectional flyback converter, active cell-balancing, photo DMOS-FET relay, pre-charging technology, loss analysis
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在實現具雙向返馳轉換器之主動式電池電量平衡系統。所提之系統包
    括:電池模組、光繼電器陣列、電池平衡模組及通訊模組,其中,電池平衡模組
    是採用一個雙向返馳式轉換器作為主電路架構,並使用光繼電器陣列進行待平衡
    電池芯之選取,以減少轉換器之數量。其次,所使用之數位控制器結合 Modbus
    界面及 RS485 通訊協定與一組控制核心實現主從式架構系統,使得系統具有擴
    展性。再者,藉由讀取各電池芯之電壓電流值,並計算其變動量,以調變系統參
    數,使系統可操作在預設定之平衡電流以及安全電壓範圍內。此外,在光繼電器
    陣列閉合前加入預充電技術,以降低因光繼電器兩側電壓差所產生的湧浪電流,
    以增加光繼電器之使用安全性以及壽命。另外,本文在平衡動作中,加入不同的
    控制策略及損耗分析,並實際運用至系統進行實測,通過結果以進行比較。最後,
    本文根據實際之系統參數進行電腦模擬,並提出數學模型,以進行損耗分析,再
    以實測結果驗證所提系統與數學模型之可行性與正確性。


    This thesis implements an active cell-balancing system with a bidirectional
    flyback converter, including a battery module, photo relay array, cell-balancing module, and communication module. To reduce system complexity, a bidirectional flyback converter and photo relay array are employed to balance each cell in the battery module. Worth-mentioning, using the combination of digital controller and Modbus communication function makes the system more expandable with master-slave
    architecture. Furthermore, modulating parameters with the variation of each cell voltage and current make the operation of preset balance current and safe voltage range possible. With an additional pre-charging technique, the safety and long lifetime of relays are increased by reducing the inrush current generated by the voltage difference between both sides of the relay. Finally, comparing the different control strategies and model of loss analysis, all the simulations, and measured results proves this system feasible and reliable.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 4 1.3 論文架構 5 第二章 鋰三元動力電池模組之監測電路 6 2.1 鋰三元電池之特性 6 2.2 鋰電池模組之監測電路 8 2.3 電池模組間之通訊界面 12 2.3.1 通用非步收發傳输器 13 2.3.2 Modbus通訊協定 14 第三章 具雙向返馳轉換器之主動式電量平衡系統 16 3.1 電池電量平衡技術簡介 16 3.1.1 被動式電量平衡電路 19 3.1.2 主動式電量平衡電路 20 3.1.3 本文所提出之主動式電量平衡電路 26 3.2 主動式平衡電路之模式分析 29 3.3主動式平衡電路之損耗分析 36 3.4 同步整流技術 39 3.5 光繼電器之應用 41 3.5.1 光繼電器的優勢 41 3.5.2 預充電技術之實現方式 45 第四章 數位控制之實現 46 4.1 數位控制器之介紹 46 4.2 數位控制晶片dsPIC33FJ64GS606 48 4.3 數位控制晶片與系統之整合 51 4.4 平衡策略控制流程說明 52 4.5 輔助電源之相關說明 60 第五章 具電量平衡之雙向轉換器之設計考量 61 5.1 雙向返馳式電能轉換器之規格 61 5.2 變壓器之設計 62 5.3 主動式電量平衡電路之回授控制 65 5.4 類比數位信號轉換器(ADC) 70 5.5 脈衝寬度調製(PWM)之驅動電路設計 71 5.6 電池管理系統保護之設計與實現 73 第六章 電路模擬與實測結果 75 6.1 系統規格 75 6.2 模擬與實測波形之比較 77 6.3 主動式電量平衡電路之回授控制實測結果 87 6.4 主動式電量平衡電路之不同控制策略實測結果 88 6.5 雙向返馳式轉換器之損耗分析實測 96 第七章 結論與未來展望 99 7.1 結論 99 7.2 未來展望 100 參考文獻 101

    [1] J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter, and K. Dietmayer, “ State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation,” Journal of Power Sources 2011: vol; 196: 5357-5363.
    [2] S. Gerssen-Gondelach, A. Faaij, “Performance of batteries for electric vehicles on short and longer term,” Journal of Power Sources 2012: vol; 212: 111-129.
    [3] R. Adany, D. Aurbach, S. Kraus, “Switching algorithms for extending battery life in Electric Vehicles,” Journal of Power Sources 2013: vol; 213: 50-59.
    [4] Fathabadi, H, “A novel design including cooling media for lithium-ion batteries pack used in hybrid and electric vehicles,” J. Power Sources 2014: vol: 245, 495–500.
    [5] Hooper, James Michael; Marco, James, “Characterising the in-vehicle vibration inputs to the high voltage battery of an electric vehicle,” J. Power Sources 2014: vol: 245, 510–519.
    [6] W. Waag, C. Fleischer, D. Sauer, “Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles,” J. Power Sources 2014: vol: 258, 321–339.
    [7] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272–288, 2013.
    [8] R. Xiong, F. Sun, X. Gong, H. He, “Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles,” Journal of Power Sources, vol. 242, pp. 699–713, 2013.
    [9] 新通訊,避免電池容量失衡電芯平衡技術延長鋰電池壽命[online]. Available:https://www.2cm.com.tw/2cm/zhtw/tech/A0006707808747A4B3BD6014525B40FA
    [10] C.-H. Kim, M.-Y. Kim, H.-S. Park, and G.-W. Moon, “A modularized two-stage charge equalizer with cell selection switches for seriesconnected lithium-ion battery string in an HEV,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3764–3774, Aug. 2012.
    [11] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Design considerations for charge equalization of an electric vehicle battery system,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 28–35, Feb. 1999.
    [12] M. Uno and K. Tanaka, “Double-switch single-transformer cell voltage equalizer using a half-bridge inverter and a voltage multiplier for seriesconnected supercapacitors,” IEEE Trans. Veh. Technol., vol. 61, no. 9, pp. 3920–3930, Nov. 2012
    [13] C.-H.Kim,M.-Y.Kim,andG.-W.Moon, “A modularized charge equalizer using a battery monitoring IC for series-connected Li-ion battery string in electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3779– 3787, Aug. 2013.
    [14] H.-S. Park, C.-H. Kim, K.-B. Park, G.-W. Moon, and J.-H. Lee, “Design of a charge equalizer based on battery modularization,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3216–3223, Sep. 2009.
    [15] A. Xu, S. Xie, and X. Liu, “Dynamic voltage equalization for series connected ultracapacitors in EV/HEV applications,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3981–3987, Oct. 2009.
    [16] H.-S. Park, C.-E. Kim, and G.-W. Moon, “Two-stage cell balancing scheme for hybrid electric vehicle lithium-ion battery strings,” in Proc. Power Electron. Specialists Conf., Orland, FL, USA, Jun. 2007, pp. 273–279.
    [17] M.-Y. Kim, C.-H. Kim, S.-Y. Cho, and G.-W. Moon, “A cell selective charge equalizer using multi-output converter with auxiliary transformer,” in Proc. 8th Int. Conf. Power Electron., Jeju, Korea, May 2011, pp. 310–317.
    [18] M.-Y. Kim, J.-W. Kim, C.-H. Kim, S.-Y. Cho, and G.-W. Moon, “Automatic charge equalization circuit based on regulated voltage source for series connected lithium-ion batteries,” in Proc. 8th Int. Conf. Power Electron., Jeju, Korea, May 2011, pp. 2248–2255.
    [19] A. M. Imtiaz and F. H. Khan, “Time shared ?yback converter’ based regenerative cell balancing technique for series connected Li-ion battery strings,”IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5960–5975, Dec. 2013.
    [20] C. Pascual and P. T. Krein, “Switched capacitor system for automatic series battery equalization,” in Proc. 12th Annu. Appl. Power Electron. Conf. Expo., vol. 2, Atlanta, GA, USA, Feb. 1997, pp. 848–854.
    [21] Y. Yuanmao, K. W. E. Cheng, and Y. P. B. Yeung, “Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3234–3242, Jul. 2012.
    [22] A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery charge equalization technique,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2277–2285, Jun. 2008.
    [23] M.-Y. Kim, C.-H. Kim, J.-H. Kim, D.-Y. Kim, and G.-W. Moon, “Switched capacitor with chain structure for cell-balancing of lithium-ion batteries,” in Proc. 38th Annu. Conf. IEEE IECON, Montreal, QC, Canada, 2012, pp. 2994–2999.
    [24] M.-Y. Kim, C.-H. Kim, J.-H. Kim, and G.-W. Moon, “A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3989–3999, Aug. 2014.
    [25] N. H. Kutkut, “A modular nondissipative current diverter for EV battery charge equalization,” in Proc. 13th Annu. Appl. Power Electron. Conf. Expo., vol. 2, Anaheim, CA, USA, Feb. 1998, pp. 686–690.
    [26] F. Mestrallet, L. Kerachev, J.-C. Crebier, and A. Collet, “Multiphase interleaved converter for lithium battery active balancing,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2874–2881, Jun. 2014.
    [27] S.Yarlagadda,T.T.Hartley,andI.Husain,“A battery management system using an active charge equalization technique based on a dc/dc converter topology,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2720–2729, Nov./Dec. 2013.
    [28] M. Uno and K. Tanaka, “Single-switch multioutput charger using voltage multiplier for series-connected lithium-ion battery/supercapacitor equalization,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3227–3239, Aug. 2013.
    [29] Y.-S. Lee and M.-W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1297–1307, Oct. 2005.
    [30] P. A. Cassani and S. S. Williamson, “Design, testing, and validation of a simpli?ed control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3956–3962, Dec. 2010.
    [31] S.-H. Park, T.-S. Kim, J.-S. Park, G.-W. Moon, and M.-J. Youn, “A new battery equalizer based on buck–boost topology,” in Proc. 7th Annu. Int. Conf. Power Electron., Daegu, Korea, Oct. 2007, pp. 962–965.
    [32] Y.-S. Lee and G.-T. Cheng, “Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1213–1224, Sep. 2006.
    [33] S.-H. Park, K.-B. Park, H.-S. Kim, G.-W. Moon, and M.-J. Youn, “Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2900–2911, Sep. 2012.
    [34] C. Karnjanapiboon, K. Jirasereeamornkul, and V. Monyakul, “High ef?ciency battery management system for serially connected battery string,” in Proc. IEEE Int. Symp. Ind. Electron., Seoul, Korea, Jul. 2009, pp. 1504–1509.
    [35] M. Einhorn, W. Roessler, and J. Fleig, “Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2448–2457, Jul. 2011.
    [36] Sanyo/Panasonic,“Specifications for UR18650NSX”
    [37] Texas Instruments,“LM358,Dual operational amplifiers Datasheet”
    [38] Allergro MicroSystems,“ACS712ELCTR-05B-T Datasheet”
    [39] Mohamed Daowd, Mailier Antoine, Noshin Omar, Philippe Lataire, Peter Van Den Bossche and Joeri Van Mierl, “Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery,”Energies 2014, 7, 2897-2937; doi:10.3390/en7052897
    [40] Linear Technology, “LTC-3300 Cell Balance IC”
    [41] 張永農, 吳森統, 王建民, 張智淵, 程裕庭,“電池充電主動式快速平衡電路”臺灣第39屆電力工程研討會,民國一百零六年十二月。
    [42] MATTHEW MARTIN,“ACTIVE FLYBACK BASED BATTERY MANAGEMENT SYSTEM WITH PROPORTIONAL BALANCING FOR USE IN AN ELECTRIC RACE CAR”, THE UNIVERSITY OF TEXAS AT ARLINGTON August 2016
    [43] Letex Technology,“LT318 Photo DMOS-FET Relay Specifications”
    [44] 簡聰富,“數位控制系統 VS 類比控制系統”,南台科技大學電機工程系。
    [45] 盧紹賓,“具數位控制器之深海探勘船電源供應系統”,國立臺灣科技大學電機工程系碩士學位論文,民國一百零六年十二月。
    [46] 彭啓睿,“具優化加熱效率之感應加熱系統”,國立臺灣科技大學電機工程系碩士學位論文,民國一百零七年六月。
    [47] Microchip, “Assembler/Linker/Librarian User's Guide,” 2005.
    [48] Microchip, dsPIC33FJ64GS606 datasheet,“16-bit Digital Signal Controllers(up to 64 KB Flash and 9 KB SRAM) with High-Speed PWM, ADC, and Comparators”,2009-2012.
    [49] Microchip, “MPLAB XC16 C Compiler User's Guide,” 2012-2016.
    [50] Minmax, “MCW105-24S15 Model Selection User's Guide, ”2012.
    [51] Z. John Shen1, Yali Xiong1, Xu Cheng1, Yue Fu1, and Pavan Kumar2, “ Power MOSFET Switching Loss Analysis: A New Insight,” 2006 IEEE
    [52] 林梓誠,“Design Consideration of Off-Line Flyback Design Consideration of Off-Line Flyback,”Application Note 035,August 2015.
    [53] Texas Instruments,“CSD18510KCS 40-V N-Channel NexFET? Power MOSFET”
    [54] Texas Instruments,“CSD19536KTT 100 V N-Channel NexFET? Power MOSFET”
    [55] TOSHIBA,“TLP250H”

    無法下載圖示 全文公開日期 2024/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE