簡易檢索 / 詳目顯示

研究生: 王誌陽
Chih-yang Wang
論文名稱: 製備含金屬粒子之奈米纖維薄膜並探討其應用
Preparation of electrospun nanofibers containing silver particles
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 李振綱
Cheng-kang Lee
黃駿
Chun Huang
周秀慧
Shiu-huey Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: 電紡絲聚乙烯醇聚幾內酯抗菌
外文關鍵詞: Electrospinning, Polyvinyl alcohol (PVA), Polycaprolactone (PCL), Antimicrobial
相關次數: 點閱:315下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗之目的在於製備出含有金屬銀粒子之奈米纖維薄膜並探討其抗菌之應用。聚乙烯醇 (PVA),為一種不具毒性且含有大量羥基(-OH)的水溶性高分子聚合物,且可經由生物降解並對於對環境無毒害。而聚己內酯則具生物相容性(biocompatibility)以及生物可分解性(biodegradable)的特性,此二種高分子已為廣泛地應用在生醫領域,為本實驗所採用。
電紡絲技術所製備出的奈米纖維具有高比表面積、高機械強度、方便、成本低等優點,因此我們選用此技術並加以探討。在高分子聚乙烯醇的部分,我們將硝酸銀加入至聚乙烯醇中,利用電紡絲的技術,製備出纖維薄膜。分別討論在紫外光及氬氣電漿處理下的抗菌情形。而在聚己內酯的部分,利用電紡絲分別製備出聚己內酯纖維薄膜及合成奈米銀溶液後,將聚己內酯浸泡至合成的奈米銀溶液,並討論其抗菌的情形。
本實驗所製備出的聚乙烯醇-銀與聚己內酯-銀纖維薄膜在經由革蘭氏陽性的黃金葡萄球菌及革蘭氏陰性的大腸桿菌測試後,均展現了良好的抗菌效果,我們相信未來能將其應用於傷口敷料,及其相關的領域中。


In this study, we have prepared two different electrospinning fibers: polyvinyl alcohol (PVA) and polycaprolactone (PCL). The advantages of applying electrospinning for preparing fibers including the provided high surface area to volume ratio, ease of fiber functionalization, low cost, and easy for mass production. The aims of this thesis were to prepare antimicrobial fibrous mats and the strategies were to incorporate silver particles into the prepared electrospun fibers.
For electrospun PVA or (PVA+AgNO3), the resultant fibrous mats revealed nanostructure with the average fiber diameter of 300 nm. The reduction of Ag was facilitated by applying highly energetic sources such as UV irradiation and argon (Ar) plasma. The results showed that the addition of AgNO3 assisted effectively the inhibition again bacteria, even without the applications of the high energetic sources. The antibacterial effects were evaluated by measuring the inhibition zone diameters (IZD) from two different types of bacteria: E. coli. and S. aureus.
The fibers prepared from PCL revealed microstructure and the incorporation of silvers was assisted by preparing silver particulate solutions separately and to immerse the PCL fibrous mat in the silver particulate solutions. The results showed that only when the PCL fiber interacted with Ag solution of pH 3.0, there was particulate Ag found on the PCL fibers. Furthermore, the prepared (PCL+Ag) fibers revealed good antimicrobial activities. The developments of the fibrous mat with high surface area and antimicrobial effect possess potentials for applications in wound dressing and related fields.

Abstract I 摘要 II 誌謝 III Content IV List of figures VI List of table XI Chapter 1. Introduction 1 Chapter 2. Literature review 2 2.1 Nanofiber 2 2.2 Electrospinning 2 2.2.1 Basic principle of electrospinning 3 2.2.2 Effects of parameters for electrospinning 4 2.3 The incorporation of metal nanoparticles into polymer nanofibers 5 Chapter 3. Materials and methods 8 3.1 Chemicals 8 3.2 Methods and instruments 8 3.2.1 Preparation of electrospun nanofibrous mats 8 3.2.2 Synthesis of citrate-stabilized silver nanoparticles 10 3.2.3 Preparation of electrospun nanofibrous mats containing metallic nanoparticles 10 3.2.4 Sample preparation and characterizations 11 3.2.5 Bacterial culture 12 3.2.6 Antibacterial test 13 Chapter 4. Results and Discussion 14 4.1. Preparation of electrospun nanofibrous mats containing silver nitrate nanoparticles by using UV irradiation 14 4.1.1 Effects of UV irradiation on surface morphology of PVA-NFs and (PVA+AgNO3)-NFs 14 4.1.2 Analysis of the Ag content by Inductively-Coupled Plasma 15 4.1.3 Antibacterial test 16 4.2 Preparation of electrospun nanofibrous mats containing silver nanoparticles by Argon plasma treatment 18 4.2.1 Effects of Argon plasma treatment on Surface morphology of PVA-NFs and (PVA+AgNO3)-NFs 18 4.2.2 Analysis of the Ag content by Inductively-Coupled Plasma 19 4.2.3 Antibacterial test 19 4.3 The optimal condition for electrospinning PCL nanofibers 20 4.4 Preparation of electrospun PCL nanofibrous mats containing metallic nanoparticles by physical adsorption 21 Chapter 5. Conclusions 47 Appendix 49 回答問題 49 Supporting information 61 Reference 70

1. (a) Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H., Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromolecular Rapid Communications 2004, 25 (18), 1632-1637; (b) Hong, K. H.; Park, J. L.; Sul, I. H.; Youk, J. H.; Kang, T. J., Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. Journal of Polymer Science Part B: Polymer Physics 2006, 44 (17), 2468-2474.
2. Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 2008, 4 (3), 707-716.
3. (a) Dersch, R.; Steinhart, M.; Boudriot, U.; Greiner, A.; Wendorff, J. H., Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers for Advanced Technologies 2005, 16 (2-3), 276-282; (b) Yoo, H. S.; Kim, T. G.; Park, T. G., Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced drug delivery reviews 2009, 61 (12), 1033-42.
4. Barnes, C. P.; Sell, S. A.; Boland, E. D.; Simpson, D. G.; Bowlin, G. L., Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced drug delivery reviews 2007, 59 (14), 1413-33.
5. Agarwal, S.; Wendorff, J. H.; Greiner, A., Use of electrospinning technique for biomedical applications. Polymer 2008, 49 (26), 5603-5621.
6. Smith, L. A.; Ma, P. X., Nano-fibrous scaffolds for tissue engineering. Colloids and surfaces. B, Biointerfaces 2004, 39 (3), 125-31.
7. Li, D.; McCann, J. T.; Gratt, M.; Xia, Y., Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chemical Physics Letters 2004, 394 (4-6), 387-391.
8. Aussawasathien, D.; Teerawattananon, C.; Vongachariya, A., Separation of micron to sub-micron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters. Journal of Membrane Science 2008, 315 (1-2), 11-19.
9. Chen, J.-P.; Chang, G.-Y.; Chen, J.-K., Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 313-314, 183-188.
10. Wang, X.; Drew, C.; Lee, S.-H.; Senecal, K. J.; Kumar, J.; Samuelson, L. A., Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors. Nano Letters 2002, 2 (11), 1273-1275.
11. (a) Reneker, D. H.; Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7 (3), 216; (b) Thompson, C. J.; Chase, G. G.; Yarin, A. L.; Reneker, D. H., Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48 (23), 6913-6922.
12. Teo, W.; Ramakrishna, S., A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17 (14), R89.
13. Sill, T. J.; von Recum, H. A., Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008, 29 (13), 1989-2006.
14. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42 (1), 261-272.
15. Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J., Study on morphology of electrospun poly (vinyl alcohol) mats. European Polymer Journal 2005, 41 (3), 423-432.
16. Bhardwaj, N.; Kundu, S. C., Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances 2010, 28 (3), 325-47.
17. Deitzel, J.; Kleinmeyer, J.; Harris, D.; Beck Tan, N., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42 (1), 261-272.
18. (a) Dong, H.; Fey, E.; Gandelman, A.; Jones, W. E., Synthesis and Assembly of Metal Nanoparticles on Electrospun Poly(4-vinylpyridine) Fibers and Poly(4-vinylpyridine) Composite Fibers. Chemistry of Materials 2006, 18 (8), 2008-2011; (b) Formo, E.; Lee, E.; Campbell, D.; Xia, Y., Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications. Nano Letters 2008, 8 (2), 668-672.
19. Wang, M.; Singh, H.; Hatton, T. A.; Rutledge, G. C., Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 2004, 45 (16), 5505-5514.
20. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y.; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 2007, 3 (1), 95-101.
21. Yamamoto, O., Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials 2001, 3 (7), 643-646.
22. Dias, H. V. R.; Batdorf, K. H.; Fianchini, M.; Diyabalanage, H. V. K.; Carnahan, S.; Mulcahy, R.; Rabiee, A.; Nelson, K.; van Waasbergen, L. G., Antimicrobial properties of highly fluorinated silver(I) tris(pyrazolyl)borates. Journal of Inorganic Biochemistry 2006, 100 (1), 158-160.
23. Jin, W.-J.; Jeon, H. J.; Kim, J. H.; Youk, J. H., A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synthetic Metals 2007, 157 (10–12), 454-459.
24. Lu, H. W.; Liu, S. H.; Wang, X. L.; Qian, X. F.; Yin, J.; Zhu, Z. K., Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Materials Chemistry and Physics 2003, 81 (1), 104-107.
25. Dong, H.; Wang, D.; Sun, G.; Hinestroza, J. P., Assembly of Metal Nanoparticles on Electrospun Nylon 6 Nanofibers by Control of Interfacial Hydrogen-Bonding Interactions. Chemistry of Materials 2008, 20 (21), 6627-6632.
26. Nguyen, T. H.; Kim, Y. H.; Song, H. Y.; Lee, B. T., Nano Ag loaded PVA nano-fibrous mats for skin applications. Journal of biomedical materials research. Part B, Applied biomaterials 2011, 96 (2), 225-33.
27. Damm, C.; Münstedt, H., Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Applied Physics A 2008, 91 (3), 479-486.
28. Ryu, Y. J.; Kim, H. Y.; Lee, K. H.; Park, H. C.; Lee, D. R., Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal 2003, 39 (9), 1883-1889.
29. Shalumon, K. T.; Anulekha, K. H.; Nair, S. V.; Nair, S. V.; Chennazhi, K. P.; Jayakumar, R., Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. International journal of biological macromolecules 2011, 49 (3), 247-54.
30. Tomayko, M. M.; Reynolds, C. P., Determination of subcutaneous tumor size in athymic (nude) mice. Cancer chemotherapy and pharmacology 1989, 24 (3), 148-154.
31. Ma, Z.; Ji, H.; Tan, D.; Teng, Y.; Dong, G.; Zhou, J.; Qiu, J.; Zhang, M., Silver nanoparticles decorated, flexible SiO2 nanofibers with long-term antibacterial effect as reusable wound cover. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 387 (1-3), 57-64.

無法下載圖示 全文公開日期 2019/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE