簡易檢索 / 詳目顯示

研究生: 楊元彰
Yuan-Chang Yang
論文名稱: 氧化石墨烯共聚高分子及導電銀膠製備與特性分析之研究
Study on Preparation and Characterization of Graphene Oxide Copolymer and Conductive Silver Paste
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
鄭智嘉
Chih-Chia Cheng
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 125
中文關鍵詞: 改質氧化石墨烯聚甲基丙烯酸甲酯共聚物黃化導電膠矽膠樹脂電磁屏蔽
外文關鍵詞: modified graphene oxide, polymethyl methacrylate copolymer, yellowing, conductive paste, silicone, electromagnetic shielding
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文第一部分為抗黃化高分子之開發,因應產業的需求,增進塗料耐用性仍為需持續發展之方向,其黃化主因為日光中紫外線光解反應,因此,本研究以氧化石墨烯或表面改質氧化石墨烯接枝於聚甲基丙烯酸甲酯(PMMA),以氧化石墨烯吸收紫外線的特性來改善黃化的問題。先針對氧化石墨烯表面改質,以提高其分散性,再以自由基共聚合方式,合成適當分子量之氧化石墨烯/PMMA共聚物,針對塗料特性及氧化石墨烯的性質,如:氧化石墨烯改質後分散性、氧化石墨烯對紫外光的吸收性、共聚高分子之抗黃化性、熱穩定性、耐鹽性等進行研究與反應機制分析。本研究發現改質氧化石墨烯/PMMA薄膜的紫外光吸收性較佳,可增進其抗黃化性質,且其塗佈於鐵材後也可增加其耐鹽性。
本論文之第二主題為開發矽膠型導電膠,隨著各類通訊、電子設備及產品的發展,需降低電磁波對電子元件的影響,故需發展高效率且熱穩定性高的電磁波屏蔽材料。在此研究以矽氧樹脂與銀銅粉製備導電膠之程序,製程中使用片狀及球狀銀銅粉,添加於矽氧樹脂中,並調整其他添加物含量,包含溶劑、矽烷偶聯劑、補強劑等,分析各參數對導電性質、電磁屏蔽與結構強度的影響,並找出最適化配方及製程。實驗結果顯示導電銀膠中導電粒子固含量須達70 wt%,而加入適量溶劑可使導電粒子於矽膠內形成導電通路,並以恆溫攪拌增加導電粒子的分散性,最後以加壓抽氣過濾移除多餘溶劑可製備出電阻低於0.45 Ω以及電磁屏蔽效果達80 dB之導電膠,符合實際商品之需求。


The first topic of this thesis is the development of polymer with anti-yellowing property. The development of durable paint is investigated continuously to meet industrial needs. The yellowing phenomenon over paint is resulted from the UV-photolysis of polymer. In this study, graphene oxide and surface-modified graphene oxide were grafted onto polymethyl methacrylate (PMMA) to improve its yellowing resistance due to the graphene oxide exhibits the excellent UV-absorption property. The work was divided into three stages. Firstly, the graphene oxide was modified with glycidyl methacrylate to improve its degree of dispersion. Secondly, the graphene/PMMA copolymer with an appropriate molecular weight was synthesized via a free-radical copolymerization method. Finally, the characteristics of the copolymer coatings and properties of modified graphene oxide were studied in detail, such as dispersion, absorption of ultraviolet light, yellowing resistance, thermal stability, and salt resistance. The results showed that the modified graphene oxide/PMMA film with obvious UV-absorption property exhibited the good yellowing resistance reasonably. Moreover, this copolymer coating also improved the salt resistance of iron plates.
The silicone conductive paste was the second topic of this thesis. The influence of electromagnetic waves on electronic components need to be reduced for the enhancement of stability and operation speed for various types of communications, electronic devices and products. Therefore, the development of electromagnetic shielding materials with high efficiency and thermal stability is an important issue. The preparation procedure of conductive paste with using silicone resin and silver-coated copper powder was investigated herein. The silver-coated copper powder with flake and spherical shape were respectively added to the silicone resin, and the contents of other additives were adjusted to obtain the optimal formula and process. The effects of solvents, silane coupling agents, reinforcing agents and manufacture process on conductive properties, electromagnetic shielding, and structural strength were studied systematically. It was found that the content of silver-coated copper powder should be more than 70 wt% for good conductive property. The conductive path made of conductive particles will be formed in the silicone rubber in the presence of appropriate amount of solvent. The dispersion of conductive particles was increased by using an isothermal agitation device. After using the pressurized filtration to remove the excess solvent, a conductive paste with a resistance less than 0.45 Ω and an electromagnetic shielding effect of 80 dB can be obtained, which is meet the industrial specification.

摘 要 I ABSTRACT II 誌謝 IV 圖目錄 IX 表目錄 XIII 第一章 序言 1 1.1氧化石墨烯/高分子複合材料 1 1.1.1石墨烯簡介 1 1.1.2氧化石墨烯簡介 3 1.1.3聚甲基丙烯酸甲酯簡介 4 1.1.4研究範疇 6 1.2導電銀膠 7 1.2.1矽氧樹脂簡介 7 1.2.2導電膠簡介 7 1.2.3研究範疇 8 第二章 文獻回顧 9 2.1氧化石墨烯高分子複合材料 9 2.1.1自由基聚合反應 9 2.1.2起始劑介紹 11 2.1.3影響聚合反應的因素 12 2.1.4壓克力樹脂 12 2.1.5石墨烯與氧化石墨烯的製備 14 2.1.6石墨烯與氧化石墨烯高分子複合材料 16 2.2導電銀膠 17 2.2.1導電黏著劑 17 2.2.2導電銀膠的組成 17 2.2.3矽氧樹脂 21 2.2.4導電機構 22 2.2.5導電度之影響因素 26 2.2.6電磁屏蔽 28 第三章 實驗材料與方法 31 3.1實驗設計與方法 31 3.2實驗藥品 32 3.3實驗儀器 35 3.3.1儀器設備 35 3.3.2分析儀器 37 3.4實驗步驟 43 3.4.1 FGO-PMMA及GO-PMMA之合成過程 43 3.4.2 導電銀膠製程 45 第四章 結果與討論 47 4.1 PMMA與 氧化石墨烯共聚物 47 4.1.1 GMA修飾GO 47 4.1.1.1 Raman分析結果 47 4.1.1.2 UV-Vis分析結果 48 4.1.1.3 FT-IR分析結果 50 4.1.1.4 TGA分析結果 51 4.1.2 FGO-PMMA與GO-PMMA之物理性質 53 4.1.2.1 黏度與分子量 53 4.1.2.2 合成結果 -沉降法 54 4.1.2.3 共聚物之UV-Vis分析 57 4.1.2.4 共聚物之FT-IR分析 59 4.1.2.5 黃化機制探討 – 白度計測量結果 60 4.1.2.6 黃化機制探討 – FT-IR分析結果 62 4.1.2.7 耐侯性 – 熱穩定性 66 4.1.2.8 耐侯性 – 耐鹽性 67 4.2 導電銀膠 69 4.2.1 導電銀膠製備 69 4.2.1.1 V-1509矽膠調配 70 4.2.1.2 KET-132 72 4.2.1.3 改質方式 74 4.2.1.4 SSL-302 75 4.2.1.5 以不同溶劑取代乙二醇 82 4.2.2 物理性質量測 84 4.2.2.1 導電銀膠結構 84 4.2.2.2 感應耦合電漿質譜分析儀 91 4.2.2.3 電磁屏蔽分析 92 4.2.2.4 奈米壓痕試驗 94 第五章 結論與未來展望 96 5.1 結論 96 5.1.1 PMMA與氧化石墨烯共聚物 96 5.1.1.1 GMA修飾GO 96 5.1.1.2 PMMA共聚高分子物理性質 96 5.1.1.3 黃化機制及耐侯性質 96 5.1.2 導電銀膠 97 5.2 未來展望 97 5.2.1 PMMA與氧化石墨烯共聚物 98 5.2.2 導電銀膠 98 參考文獻 99

[1] H. Kim, A. A. Abdala, and C. W. Macosko, “Graphene/Polymer Nanocomposites,” Macromolecules, vol. 43, no. 16, pp. 6515-6530, 2010.
[2] H. W. Kroto, J. R. Heath, S. C. O'Brien, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162, 1985.
[3] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56, 1991.
[4] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, vol. 321, no. 5887, pp. 385, 2008.
[5] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Letters, vol. 8, no. 3, pp. 902-907, 2008.
[6] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology, vol. 3, pp. 206, 2008.
[7] Q. Lai, and X. Luo, “Qualitative and Quantitative Analysis of Graphene Oxides by UV Spectroscopy,” Chinese Journal of Materials Research, vol. 29, no. 2, pp. 155-160, 2015.
[8] K. Kalaitzidou, H. Fukushima, and L. T. Drzal, “Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets,” Carbon, vol. 45, no. 7, pp. 1446-1452, 2007.
[9] 蘇清源, “石墨烯氧化物之特性與應用前景,” 物理雙月刊, vol. 33, no. 2, pp. 163-167, 2011.
[10] K. Spyrou, and P. Rudolf, “An introduction to graphene,” Functionalization of graphene, pp. 1-20, 2014.
[11] L. J. Malone, and T. Dolter, Basic Concepts of Chemistry: John Wiley & Sons, 2008.
[12] F. Aftalion, A History of the International Chemical Industry: Chemical Heritage Press, 2001.
[13] J. E. Mark, Polymer Data Handbook: Oxford University Press, 2009.
[14] 王国建, 高分子合成新技术: 化学工业出版社材料科学与工程出版中心, 2004.
[15] 林建中, 周宗華, “高分子材料,” 台北: 新文京開發出版股份有限公司, 2002.
[16] K. Matyjaszewski, and T. P. Davis, Handbook of Radical Polymerization: Wiley, 2003.
[17] K. Matyjaszewski, “Controlled radical polymerization,” Current Opinion in Solid State and Materials Science, vol. 1, no. 6, pp. 769-776, 1996.
[18] B. Jędrzejewska, “Factors affecting the TMPTA radical polymerization photoinitiated by phenyltrialkylborates paired with tri-cationic hemicyanine dye. Kinetic studies,” Colloid and Polymer Science, vol. 291, no. 9, pp. 2225-2236, 2013.
[19] C. Duval-Terrié, and L. Lebrun, “Polymerization and Characterization of PMMA. Polymer Chemistry Laboratory Experiments for Undergraduate Students,” Journal of chemical education, vol. 83, no. 3, pp. 443, 2006.
[20] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666, 2004.
[21] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, and AA, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197, 2005.
[22] P. R. Somani, S. P. Somani, and M. Umeno, “Planer nano-graphenes from camphor by CVD,” Chemical Physics Letters, vol. 430, no. 1-3, pp. 56-59, 2006.
[23] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Progress in Materials Science, vol. 56, no. 8, pp. 1178-1271, 2011.
[24] W. S. Hummers Jr, and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958.
[25] B. C. Brodie, “XIII. On the atomic weight of graphite,” Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859.
[26] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
[27] 石墨烯技術: 五南, 2015.
[28] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, “Recent advances in graphene based polymer composites,” Progress in Polymer Science, vol. 35, no. 11, pp. 1350-1375, 2010.
[29] B. Z. Jang, and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review,” Journal of Materials Science, vol. 43, no. 15, pp. 5092-5101, 2008.
[30] G. Gonçalves, P. A. A. P. Marques, A. Barros-Timmons, I. Bdkin, M. K. Singh, N. Emami, and J. Grácio, “Graphene oxide modified with PMMA via ATRP as a reinforcement filler,” Journal of Materials Chemistry, vol. 20, no. 44, pp. 9927, 2010.
[31] T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff, “Functionalized graphene sheets for polymer nanocomposites,” Nature Nanotechnology, vol. 3, no. 6, pp. 327, 2008.
[32] K. H. Kim, and W. H. Jo, “Synthesis of Polythiophene-graft-PMMA and Its Role as Compatibilizer for Poly(styrene-co-acrylonitrile)/MWCNT Nanocomposites,” Macromolecules, vol. 40, no. 10, pp. 3708-3713, 2007.
[33] K. P. Pramoda, H. Hussain, H. M. Koh, H. R. Tan, and C. B. He, “Covalent bonded polymer-graphene nanocomposites,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 48, no. 19, pp. 4262-4267, 2010.
[34] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable Atomic Membranes from Graphene Sheets,” Nano Letters, vol. 8, no. 8, pp. 2458-2462, 2008.
[35] H. Kim, Y. Miura, and C. W. Macosko, “Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity,” Chemistry of Materials, vol. 22, no. 11, pp. 3441-3450, 2010.
[36] H. Kim, and C. W. Macosko, “Processing-property relationships of polycarbonate/graphene composites,” Polymer, vol. 50, no. 15, pp. 3797-3809, 2009.
[37] 倪端銘, “電子工業用抗靜電/導電塑膠,” 化工資訊, vol. 7, pp. 42-55, 1993.
[38] 賴耿陽, “環氧樹脂應用實務,” 復漢出版社, 第 1, vol. 4, 1999.
[39] T. Miyamoto, and M. Kawata, "Anisotropic conductive adhesive and method for preparation thereof and an electronic apparatus using said adhesive," Google Patents, 2000.
[40] 張豐志, 應用高分子手冊: 五南圖書出版公司, 2003.
[41] J. C. Bolger, and S. L. Morano, conductive adhesives: how and where they work, 1984.
[42] Y. Shirai, M. Komagata, and K. Suzuki, "Non-migration conductive adhesives." Polymers and Adhesives in Microelectronics and Photonics pp. 79-83. 2001
[43] J. Lei, D. Han, S. Xinjun, and X. Bin, "Evaluation of a double-layer anisotropic conductive film (ACF) for fine pitch chip-on-glass (COG) interconnection." pp. 344-347.
[44] S. K. Kang, R. S. Rai, and S. Purushothaman, “Development of high conductivity lead (Pb)-free conducting adhesives,” IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol. 21, no. 1, pp. 18-22, 1998.
[45] H. P. Wu, J. F. Liu, X. J. Wu, M. Y. Ge, Y. W. Wang, G. Q. Zhang, and J. Z. Jiang, “High conductivity of isotropic conductive adhesives filled with silver nanowires,” International Journal of Adhesion and Adhesives, vol. 26, no. 8, pp. 617-621, 2006.
[46] Y. Lilei, L. Zonghe, L. Johan, and A. Tholen, “Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 22, no. 4, pp. 299-302, 1999.
[47] H. Jiang, K.-s. Moon, Y. Li, and C. P. Wong, “Surface Functionalized Silver Nanoparticles for Ultrahigh Conductive Polymer Composites,” Chemistry of Materials, vol. 18, no. 13, pp. 2969-2973, 2006.
[48] B. Hardman, Torkelson, A, “Encyclopedia of Chemical Technology,” vol. 20, pp. 20, 1982.
[49] R. Elgin, B. Riegler, and R. Thomaier, “How temperature affects silicone encapsulants in high-brightness LED applications,” Photonics Spectra, vol. 41, no. 4, pp. 70-78, 2007.
[50] 信越化學工業株式會社, “電氣·電子用 RTV矽橡膠,” 2012.
[51] L. C. Montemayor, "Electrically Conductive Silicone Adhesive."
[52] H. M. Ren, K. Zhang, Y. M. Matthew, X. Z. Fu, R. Sun, and C. P. Wong,Ren2014, “Preparation and performance of Ag-coated Cu flakes filled epoxy as electrically conductive adhesives,” Journal of Solid State Lighting, vol. 1, no. 1, pp. 10, 2014.
[53] V. Fano, P. Gennari, and I. Ortalli, “Dimensional stability of silicone-based impression materials,” Dental Materials, vol. 8, no. 2, pp. 105-109, 1992.
[54] I. Novak, I. Krupa, and I. Chodak, “Investigation of the correlation between electrical conductivity and elongation at break in polyurethane-based adhesives,” Synthetic Metals, vol. 131, no. 13, pp. 93-98, 2002.
[55] A. J. Lovinger, “Development of electrical conduction in silver-filled epoxy adhesives,” The Journal of Adhesion, vol. 10, no. 1, pp. 1-15, 1979.
[56] D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, “Electrical resistivity of composites,” Journal of the American Ceramic Society, vol. 73, no. 8, pp. 2187-2203, 1990.
[57] S. M. Aharoni, “Electrical resistivity of a composite of conducting particles in an insulating matrix,” Journal of Applied Physics, vol. 43, no. 5, pp. 2463-2465, 1972.
[58] J. Liu, Conductive adhesives for electronics packaging: Electrochemical Publications Limited, 1999.
[59] "Conductive Polymer Composites, in:" Encyclopedia of Polymer Science and Technology, 2011.
[60] Y. Huang, X. Gong, T. Bruemmer, S. K. Khanna, and W. J. Chappell, "Magnetically aligned anisotropic conductive adhesive for high-frequency interconnects." pp. 861-864
[61] M. J. Yim, J. S. Hwang, W. Kwon, K. W. Jang, and K.-W. Paik, “Highly reliable non-conductive adhesives for flip chip CSP applications,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 26, no. 2, pp. 150-155, 2003.
[62] G. Schmid, Clusters and colloids: from theory to applications: Wiley Online Library, 1994.
[63] D. Lu, and C. P. Wong, “Effects of shrinkage on conductivity of isotropic conductive adhesives,” International Journal of Adhesion and Adhesives, vol. 20, no. 3, pp. 189-193, 2000.
[64] P. I. ENERGY, “Physical Stability of Disperse Systems,” 2009.
[65] 林振豐, “電磁波遮蔽材料及吸波材料頻率特性之探討,” 臺北科技大學機電整合研究所學位論文, pp. 1-57, 2007.
[66] 黃繼遠, “隱形殺手電磁波vs殺手剋星電磁波遮蔽材,” 科學發展, vol. 362, pp. 18-21, 2003.
[67] 陳鑫泉, “導電性織物制備熱塑性複合材料之電氣/機械特性與其最佳化電磁效應驗證,” 逢甲大學紡織工程研究所博士論文, 2006.
[68] K. Bautista, “Four-point probe operation,” 2003.
[69] O. García-Valdez, R. Ledezma-Rodríguez, R. Torres-Lubian, L. Yate, E. Saldívar-Guerra, and R. F. Ziolo, “The “Grafting-to” of Well-Defined Polystyrene on Graphene Oxide via Nitroxide-Mediated Polymerization,” Macromolecular Chemistry and Physics, vol. 217, no. 19, pp. 2099-2106, 2016.
[70] H. Tang, D. Liu, Y. Zhao, X. Yang, J. Lu, and F. Cui, “Molecular Dynamics Study of the Aggregation Process of Graphene Oxide in Water,” The Journal of Physical Chemistry C, vol. 119, no. 47, pp. 26712-26718, 2015.
[71] P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, and D. Cui, “Folic Acid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy,” Theranostics, vol. 1, pp. 240-250, 2011.
[72] F. T. Johra, J. W. Lee, and W. G. Jung, “Facile and safe graphene preparation on solution based platform,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 2883-2887, 2014.
[73] J. Leffler, “Towards Graphene Based Transparent Conductive Coating,” Luleå University, 2012.
[74] C. W. Lo, D. Zhu, and H. Jiang, “An infrared-light responsive graphene-oxide incorporated poly (N-isopropylacrylamide) hydrogel nanocomposite,” Soft Matter, vol. 7, no. 12, pp. 5604-5609, 2011.
[75] 林信全, 李政佳, 曾怡享, 江仁吉, 蔡美慧, “聚亞醯胺/石墨烯複合薄膜之製備與導熱性質研究,” 2013 綠色科技工程與應用研討會, 2013.
[76] E. H. El‐Kalla, S. M. Sayyah, H. H. Afifi, and A. F. Saeed, “Ultraviolet‐visible spectroscopic studies of poly(methyl methacrylate) doped with some luminescent materials,” Acta Polymerica, vol. 40, no. 5, pp. 349-351, 1989.
[77] J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir, vol. 24, no. 19, pp. 10560-10564, 2008.
[78] N. Frankhuizen, “测量光泽度的置信水平是多少,” 美國PCI中文版電子雜誌6月刊, pp. 19-21, 2016.
[79] 江元壽, “機械材料 (II). 台北縣: 台科大圖書股份有限公司,” 2001.
[80] 张. 穆罕默德·西拉理, “一种氨基硅烷偶联剂处理的银粉及其制备方法和应用,” CN105006267A, 2015.
[81] S. Y. Park, T. W. Yoon, C. H. Lee, I. B. Jeong, and S. H. Hyun, “Surface Modification of Ag Coated Cu Conductive Metal Powder for Conductive Silicone Sealant Gasket Paste,” Materials Science Forum, vol. 534-536, pp. 933-936, 2007.
[82] L. Xianxue, Z. Bingyun, X. Limei, W. Dandan, L. Zonglin, and Z. Huichai, “Study on Properties of Conductive Adhesive Prepared with Silver Nanoparticles Modified by Silane Coupling Agent,” Rare Metal Materials and Engineering, vol. 41, no. 1, pp. 24-27, 2012.
[83] B. Arkles, “Silane coupling agents: connecting across boundaries,” Morrisville: Gelest, pp. 9-12, 2003.
[84] 羅介聰, “混鍊程序對於導電銀膠導電性質的影響,” 國立清華大學化學工程學系碩士論文, 2000.
[85] L. T. Chang, T. I. Chuang, C. C. Yen, “Studies on the Preparation and Properties of EMI Shielding Materials ” Minghsin Journal, vol. 32, pp. 91-102, 2006.

無法下載圖示 全文公開日期 2023/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE