簡易檢索 / 詳目顯示

研究生: 吳翊慈
Yi-Tzu Wu
論文名稱: 第一原理計算研究固態鋰電池中電解質和正極之界面穩定性
Ab-initio Study of the Interfacial Stability of Electrolytes and Cathodes in Solid-state Lithium Batteries
指導教授: 蔡秉均
Ping-Chun Tsai
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 47
中文關鍵詞: 全固態電池電解質/正極界面界面穩定性充電狀態塗層材料
外文關鍵詞: all-solid-state battery, electrolyte/cathode interface, interfacial stability, state-of-charge, coating material
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,具有高導鋰離子性能之固態電解質已被開發用於全固態電池。 然而,大多數固態電解質與傳統商用正極材料間存在著明顯的界面不相容性,這是造成電池衰退的因素之一。在本研究中,藉由第一原理計算來量化各種固態電解質和正極的界面在不同充電狀態(SoC)下界面化學和電化學穩定性。計算結果顯示,大部分的界面為熱力學上屬於不穩定的,並且隨著 SoC 的增加反應能值會變得更加地不穩定。此外,也進一步透過實驗以證明 Li6PS5Cl (LPSC) 固態電解質和富鎳LiNi0.8Mn0.1Co0.1O2 (NMC811) 正極之間的化學副反應。我們發現化學和電化學穩定性對於固態電解質/正極界面的界面穩定性影響至關重要。為了改善界面穩定性,我們接續使用第一原理計算計算評估 40 種實驗已報導過的塗層材料,以穩定電解質和正極界面的。


State-of-the-art solid-state electrolytes (SSEs) with superior ionic conductivity have been developed for all-solid-state batteries. However, most SSEs experience noticeable interfacial incompatibility with conventional cathodes, which is one of the factors for battery degradation. Here, ab-initio calculations are used to quantify the interfacial chemical and electrochemical stability of various SSE/cathode interfaces as a function of the state-of-charge (SoC). The ab-initio results show that most interfaces are not thermodynamically stable and become more unstable with increasing SoC. Further, experiments were conducted to prove chemical side-reactions between Li6PS5Cl (LPSC) electrolyte and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. We found that both chemical and electrochemical stability are crucial for the interfacial stability of the SSE/cathode interface. To conquer the interfacial stability, we used ab-initio calculations to evaluate 40 experimentally reported interlayer materials to stabilize the electrolyte/ cathode interface.

摘要.................................................I ABSTRACT............................................II 誌謝...............................................III 目錄................................................IV 圖目錄...............................................V 表目錄.............................................VII 1. Introduction.....................................1 2. Calculation and Experimental Methods.............3 2.1 Ab-initio Calculations..........................3 2.2 Atomistic Models of Electrolytes and Cathodes.....3 2.3 Phase Stability...................................4 2.4 Interfacial Chemical Reaction Energy..............5 2.5 Electrochemical Stability.........................6 2.6 Sample Preparation and Structural Characterization....7 3. Results and Discussion.............................8 3.1 Solid-state Electrolytes and Cathodes.............8 3.2 Interfacial Chemical Stability....................8 3.3 Interfacial Electrochemical Stability............12 3.4 Experimental Chemical Stability between LPSC and NMC811......15 3.5 Interlayer Materials.............................16 4. Conclusion........................................20 5. References........................................21 6. Appendix..........................................27

[1] Manthiram, A., Yu, X., and Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2(4), 16103.
[2] Gao, Z., Sun, H., Fu, L., Ye, F., Zhang, Y., Luo, W., and Huang, Y. (2018). Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Advanced Materials, 30(17), 1705702.
[3] Gombotz, M., Hogrefe, K., Zettl, R., Gadermaier, B., and Wilkening, H. M. R. (2021). Fuzzy logic: about the origins of fast ion dynamics in crystalline solids. Philosophical Transactions of the Royal Society A, 379(2211), 20200434.
[4] Bachman, J. C., Muy, S., Grimaud, A., Chang, H. H., Pour, N., Lux, S. F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., and Yang, S. H. (2016). Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews, 116(1), 140-162.
[5] Banerjee, A., Wang, X., Fang, C., Wu, E. A., and Meng, Y. S. (2020). Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews, 120(14), 6878-6933.
[6] Yoon, K., Lee, S., Oh, K., and Kang, K. (2021). Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries. Advanced Materials, 34(4), 2104666.
[7] Xiao, Y., Wang, Y., Bo, S. H., Kim, J. C., Miara, L. J., and Ceder, G. (2020). Understanding interface stability in solid-state batteries. Nature Reviews Materials, 5(2), 105-126.
[8] Wu, Y. T., and Tsai, P. C. (2022). Ab initio Interfacial Chemical Stability of Argyrodite Sulfide Electrolytes and Layered-Structure Cathodes in Solid-State Lithium Batteries. JOM, 74(12), 4664-4671.
[9] Zhu, Y., He, X., and Mo, Y. (2015). Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Applied Materials & Interfaces, 7(42), 23685-23693.
[10] Koerver, R., Aygün, I., Leichtweiß, T., Dietrich, C., Zhang, W., Binder, J. O., Hartmann, P., Zeier, W. G., and Janek, J. (2017). Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 29(13), 5574-5582.
[11] Jung, S. K., Gwon, H., Lee, S. S., Kim, H., Lee, J. C., Chung, J. G., Park, S. Y., Aihara, Y., and Im, D. (2019). Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. Journal of Materials Chemistry A, 7(40), 22967-22976.
[12] Banerjee, A., Tang, H., Wang, X., Cheng, J. H., Nguyen, H., Zhang, M., Tan, D. H. S., Wynn, T. A., Wu, E. A., Doux, J. M., Wu, T., Ma, L., Sterbinsky, G. E., D’Souza, M. S., Ong, S. P., and Meng, Y. S. (2019). Revealing Nanoscale Solid–Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries. ACS Applied Materials & Interfaces, 11(46), 43138-43145.
[13] Auvergniot, J., Cassel, A., Ledeuil, J. B., Viallet, V., Seznec, V., and Dedryvère, R. (2017). Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries. Chemistry of Materials, 29(9), 3883-3890.
[14] Nisar, U., Muralidharan, N., Essehli, R., Amin, R., and Belharouak, I. (2021). Valuation of Surface Coatings in High-Energy Density Lithium-ion Battery Cathode Materials. Energy Storage Materials, 38, 309-328.
[15] Guan, P., Zhou, L., Yu, Z., Sun, Y., Liu, Y., Wu, F., Jiang, Y., and Chu, D. (2020). Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry, 43, 220-235.
[16] Zhao, Y., Zheng, K., and Sun, X. (2018). Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition. Joule, 2(12), 2583-2604.
[17] Kim, J. M., Zhang, X., Zhang, J. G., Manthiram, A., Meng, Y. S., and Xu, W. (2021). A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 46, 155-182.
[18] Zhu, Y., He, X., and Mo, Y. (2016). First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A, 4(9), 3253-3266.
[19] Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C., and Ceder, G. (2016). Interface Stability in Solid-State Batteries. Chemistry of Materials, 28(1), 266-273.
[20] Miara, L. J., Richards, W. D., Wang, Y. E., and Ceder, G. (2015). First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets. Chemistry of Materials, 27(11), 4040-4047.
[21] Xiao, Y., Miara, L. J., Wang, Y., and Ceder, G. (2019). Computational Screening of Cathode Coatings for Solid-State Batteries. Joule, 3(5), 1252-1275.
[22] Komatsu, H., Banerjee, S., Chandrappa, M. L. H., Qi, J., Radhakrishnan, B., Kuwata, S., Sakamoto, K., and Ong, S. P. (2022). Interfacial Stability of Layered LiNixMnyCo1–x–yO2 Cathodes with Sulfide Solid Electrolytes in All-Solid-State Rechargeable Lithium-Ion Batteries from First-Principles Calculations. The Journal of Physical Chemistry C, 126(41), 17482-17489.
[23] Liu, B., Wang, D., Avdeev, M., Shi, S., Yang, J., and Zhang, W. (2020). High-Throughput Computational Screening of Li-Containing Fluorides for Battery Cathode Coatings. ACS Sustainable Chemistry & Engineering, 8(2), 948-957.
[24] Nolan, A. M., Wachsman, E. D., and Mo, Y. (2021). Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. Energy Storage Materials, 41, 571-580.
[25] Nolan, A. M., Liu, Y., and Mo, Y. (2019). Solid-State Chemistries Stable with High-Energy Cathodes for Lithium-Ion Batteries. ACS Energy Letters, 4(10), 2444-2451.
[26] Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner. D., Ceder, G., and Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002.
[27] Kresse, G. and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.
[28] Jain, A., Hautier, G., Ong, S. P., Moore, C. J., Fischer, C. C., Persson, K. A., and Ceder, G. (2011). Formation enthalpies by mixing GGA and GGA + U calculations. Physical Review B, 84, 045115.
[29] Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865.
[30] Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50, 17953.
[31] Gorai, P., Famprikis, T., Singh, B., Stevanović, V., and Canepa, P. (2021). Devil is in the Defects: Electronic Conductivity in Solid Electrolytes. Chemistry of Materials, 33(18), 7484-7498.
[32] Patel, S. V., Banerjee, S., Liu, H., Wang, P., Chien, P. H., Feng, X., Liu, J., Ong, S. P., and Hu, Y. Y. (2021). Tunable Lithium-Ion Transport in Mixed-Halide Argyrodites Li6–xPS5–xClBrx: An Unusual Compositional Space. Chemistry of Materials, 33(4), 1435-1443.
[33] Schwietert, T. K., Arszelewska, V. A., Wang, C., Yu, C., Vasileiadis, A., de Klerk, N. J. J., Hageman, J., Hupfer, T., Kerkamm, I., Xu, Y., van der Maas, E., Kelder, E. M., Ganapathy, S., and Wagemaker, M. (2020). Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nature Materials, 19(4), 428-435.
[34] Deng, Z., Zhu, Z., Chu, I. H., and Ong, S. P. (2017). Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors. Chemistry of Materials, 29(1), 281-288.
[35] Tsai, P. C., Nasara, R. N., Shen, Y. C., Liang, C. C., Chang, Y. W., Hsu, W. D., Tran, N. T. T., and Lin, S. K. (2019). Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries. Acta Materialia, 175(15), 196-205.
[36] Ong, S. P., Wang, L., Kang, B., and Ceder, G. (2008). Li−Fe−P−O2 Phase Diagram from First Principles Calculations. Chemistry of Materials, 20(5), 1798-1807.
[37] Aydinol, M. K., Kohan, A. F., and Ceder, G. (1997). Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries. Journal of Power Sources, 68(2), 664-668.
[38] Tsai, P. C., Hsu, W. D., and Lin, S. K. (2014). Atomistic Structure and Ab Initio Electrochemical Properties of Li4Ti5O12 Defect Spinel for Li Ion Batteries. Journal of The Electrochemical Society, 161, A439.
[39] Johnson, C. S. (2018). Charging Up Lithium-Ion Battery Cathodes. Joule, 2(3), 373-375.
[40] Nie, H., Shang, C., Hu, P., and Li, Y. (2023). In-situ electrochemical polymerization of polypyrrole on LiNi0.8Co0.1Mn0.1O2 cathode with improved performance for lithium-ion batteries. Materials Letters, 335(15), 133768.
[41] Camacho-Forero, L. E. and Balbuena, P. B. (2020). Elucidating Interfacial Phenomena between Solid-State Electrolytes and the Sulfur-Cathode of Lithium–Sulfur Batteries. Chemistry of Materials, 32(1), 360-373.
[42] Xu, S., Jacobs, R. M., Nguyen, H. M., Hao, S., Mahanthappa, M., Wolverton, C., and Morgan, D. (2015). Lithium transport through lithium-ion battery cathode coatings. Journal of Materials Chemistry A, 3(33), 17248-17272.
[43] Karimov, D. N., Sorokin, N. I., Chernov, S. P., and Sobolev, B. P. (2014). Growth of MgF2 optical crystals and their ionic conductivity in the as-grown state and after partial pyrohydrolysis. Crystallography Reports, 59(6), 928-932.
[44] Molaiyan, P. and Witter, R. (2019). CaF2 solid-state electrolytes prepared by vapor pressure exposure and solid synthesis for defect and ionic conductivity tuning. Material Design & Processing Communications, 2(1), e76.
[45] Chen, Y. C., Ouyang, C. Y., Song, L. J., and Sun, Z. L. (2011). Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study. The Journal of Physical Chemistry C, 115(14), 7044-7049.

無法下載圖示 全文公開日期 2033/08/30 (校內網路)
全文公開日期 2103/08/30 (校外網路)
全文公開日期 2103/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE