簡易檢索 / 詳目顯示

研究生: 葉庭善
Taufik - Poernomo
論文名稱: 利用網印式碳電極製造可拋棄式血糖測試片
Fabrication of a Disposable Glucose Biosensor on Screen-printed Carbon Electrodes
指導教授: 李嘉平
Chiapyng Lee
口試委員: 王孟菊
none
王文
Wen Wang
郭俞麟
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 130
中文關鍵詞: 血糖測試片可拋棄式網印網印式碳電極
外文關鍵詞: glucose biosensor, disposable biosensor, screen printing, SPCEs
相關次數: 點閱:205下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用大量製造技術,即所謂的網印技術,來製造便宜且可拋棄式的安培式血糖測試片。本研究希望能夠建立一套標準程序用來製造有良好再現性且成本低的血糖測試片。本研究成功的利用網印技術製造血糖測試片。本實驗所製造的血糖測試片設計是兩電極式並且利用mediated enzymatic reaction system來偵測血糖濃度。實驗結果發現酵素反應產生的電流與所施加的葡萄糖濃度在50-600 mg/dL時呈良好的線性關係,靈敏度可以達到
0.012uA/mg/dL,且平均誤差為6.4%左右。利用本研究所製造的血糖測試片來量測血糖只需1.5 uL的樣品量且可以在5秒鐘內就完成。


The objective of this research is to use mass production compatible thick-film technology, namely, the screen printing and the stencil printing techniques to fabricate cost-effective, disposable, amperometric glucose biosensors. The scope of this study is to establish standard procedures of glucose biosensor fabrication with main focuses on low production cost and dependable reproducibility.
A disposable glucose biosensor was successfully developed in this research using screen-printing technique. The glucose biosensor was designed to have two electrodes and employed a mediated enzymatic reaction system. The screen printing technique has demonstrated a capability of fabricating the biosensor rapidly, cheaply, and, quite precisely. The fabrication process began with a flat PVC substrate. Carbon electrodes, insulation layer, matrix layer, and adhesive layer were successively screen- (or stencil-) printed onto the substrate. Finally, following the inclusion of enzyme to the matrix layer, hydrophilic layer was applied to form fully functional glucose biosensor. Production parameters and materials were carefully selected and optimized in order to achieve best result while keeping the cost low.
The fabricated biosensor was tested using relevant electrochemical methods such as cyclic voltammetry and amperometry. The biosensor responded linearly to samples with glucose concentrations of 50-600mg/dL (regression coefficient R=0.999). The sensitivity of the biosensor was 0.012uA/mg/dL and the average coefficient of variation was 6.4%. The biosensor only took as low as 1.5uL of sample and would complete the measurement in as fast as 5s. The most useful feature of the biosensor was its compatibility with LifeScan’s OneTouch® UltraTM meter. Additionally, low production cost of the glucose biosensor should open the possibility of commercialization.

TABLE OF CONTENTS Abstract…....……………………………………………………………………………….I Table of Contents…....……………………………………………………………………II List of Figures…....…………………………………………………………………….....V List of Tables…....………………………………………………………………………VII Chapter 1. Introduction …………………………………………………………………...1 1.1. Biosensors and their applications………………………………………..........1 1.1.1. What is a biosensor? ………………………………………….…..1 1.1.2. Performance factors of biosensors………………………....…..….5 1.1.3. Applications of biosensors…………………….……………....…..6 1.1.3.1. Health care application of biosensors…………….……....6 1.1.3.2. Environmental monitoring application of biosensors…….8 1.1.3.3. Food and beverage analysis application of biosensors…...8 1.1.3.4. Defense and military applications of biosensors…...…….9 1.2. Transduction methods of biosensors………………………………………...10 1.2.1. Electrochemical biosensors………………………………………10 1.2.1.1. Potentiometric biosensor………………………….……..10 1.2.1.2. Amperometric and coulometric biosensor………..……..11 1.2.1.3. Conductometric biosensor…………………………........14 1.2.1.4. FET-based biosensors…………………………….……..15 1.2.2. Optical biosensors………………………………………....……..16 1.2.3. Thermal or calorimetric biosensors…………………….………..18 1.2.4. Piezoelectric biosensors…………………………………….........18 1.3. Types of commercial biosensors…………………………………..………...20 1.3.1. Single-use biosensors……………………………………….........20 1.3.2. Intermittent-use biosensors………………………………………20 1.3.3. Continuous-use biosensors………………………………….........21 1.4. Production technologies of biosensors……………………………….……...23 1.4.1. Thick film technology……………………………………………23 1.4.2. Thin film technology…………………………………..…………25 1.5. Importance of glucose biosensor...…………………………………....…….28 1.5.1. Status of diabetes……….………………………………………..28 1.5.2. Market of glucose biosensor…………………………….…….…31 1.6. Objective and scope of this research……………………………….…..…....35 1.7. Significance of this research…………………………………………….......36 . Chapter 2. Glucose biosensor technology…...……………………………………...…...38 2.1. Evolution of glucose biosensor……………………………………...………38 2.1.1. First generation glucose biosensor………………………...……..39 2.1.2. Second generation glucose biosensor……………………...…….41 2.1.3. Third generation glucose biosensor…………………………...…43 2.2. Current generation of glucose biosensor…………………………….………45 2.2.1. LifeScan…………………………….…………………...…….....46 2.2.2. Roche Diagnostics…..…………………………………………...47 2.2.3. Bayer Diagnostics…………………………….……………….…49 2.2.4. Abbot Diabetes Care………………………………………..........50 2.3. Future developments of glucose biosensor…………………………............52 2.3.1. Implantable glucose biosensor……………………………...........52 2.3.2. Minimally invasive glucose biosensor…………………..……….53 2.3.3. Non-invasive glucose biosensor………………………...……….55 2.4. LifeScan’s OneTouch® UltraTM glucose biosensor…………………………56 2.4.1. Mechanism of OneTouch® UltraTM system………………...........56 2.4.2. Fabrication process of OneTouch® UltraTM test strip……………59 Chapter 3. Experimental…………………………………………………………………63 3.1. Equipments………………………………………………………………….64 3.1.1. Semi-automatic screen printer, printing screens, and stencils…………………………………………….……………...64 3.1.2. Potentiostat……………………………………..………………...66 3.1.3. Other equipments…………………………………….…………..66 3.2. Materials………………………………………………….…………………67 3.2.1. Substrate and inks…………………………………………….….67 3.2.2. Matrix and enzyme………………………………………….…...67 3.2.2. Buffers and solvents…………………………………………..… 67 3.2.3. Other materials…………………………………………….….….68 3.3. Preparation of buffer solutions…………………………………………..…..69 3.4. Preparation of glucose solutions……………………………………….……69 3.5. Preparation of matrix ink………………………………………….……..….69 3.6. Preparation of enzyme solutions………………………………………....….70 3.7. Substrate handling and preconditioning……………………………......…....71 3.8. Carbon electrodes screen printing………………………………………..….72 3.9. Insulation layer screen printing…………………………………………..….72 3.10. Matrix layer screen printing……………………………………………......73 3.11. Adhesive layer screen printing……………………………………………..74 3.12. Enzyme solution drop-coating…………………………………….…….....75 3.13. Sensor strip finishing……………………………………………….….…..75 3.14. Testing the glucose biosensor’s characteristics…………………….……...76 3.14.1. Thickness and surface morphology.…………………….…..…..76 3.14.2. Cyclic Voltammetry…………………………………………......77 3.14.3. Amperometry…………………………………………….……...77 Chapter 4. Results and discussions…………………………………………….………...78 4.1. Glucose biosensor system…..……………………………………………...78 4.1.1. System mechanism…………………………………….…………78 4.1.1.1. Mediated enzymatic reaction……………………………78 4.1.1.2. Important features……………………………………….82 4.1.1.3. Compatibility with LifeScan’s OneTouch® UltraTM……84 4.1.2. Material selection, design, and fabrication process……………...86 4.1.2.1. Substrate………………………………………………....86 4.1.2.2. Electrodes………………………………………………..88 4.1.2.3. Insulation layer………………………………………......91 4.1.2.4. Matrix/enzyme layer…………………………………….92 4.1.2.5. Adhesive layer and hydrophilic film…………………….95 4.2. Thickness and surface morphology analysis…………………………….......96 4.3. Cyclic voltammetry analysis…………………………………………...........97 4.3.1. CV of the glucose biosensor………………………………………97 4.3.2. Effect of scan rate…………………………………………............99 4.4. Amperometry analysis….…………………………………………….........101 4.4.1. Effect of dissolved oxygen………………………………….........101 4.4.2. Effect of GOx loading………………………………………........102 4.4.3. Effect of applied potential…………………………………..........103 4.5. Construction of calibration curves………………………………................105 4.6. Cost analysis…………………………………………………….................108 Chapter 5. Conclusions and future work…………………………………......................110 5.1. Conclusions……………………………………………………...................110 5.2. Future work……………………………………………...............................111 References…………………………………………………………………………........112 Author……………...…………………………………………………………………...122

1. Diamond, D., Principles of Chemical and Biological Sensors, Chemical Analysis Vol. 150, John Wiley and Sons, Inc., New York, 1998.
2. Chaubey, A., and Malhotra, B.D., Mediated biosensors, Biosensors and Bioelectronics 17, p. 441-456, 2002.
3. Mohanty, S.P., and Kougianos, E., Biosensors: A Tutorial Review, IEEE Potentials 25, No. 2, p. 35-40, 2006.
4. Castillo, J., Gaspar, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, A.D., and Csoregi, E., Biosensors for life quality: Design, development, and applications, Sensors and Actuators B 102, p. 179-194, 2004.
5. Eggins, B.R., Chemical Sensors and Biosensors, John Wiley and Sons, Ltd., West Sussex, 2002.
6. Brazel, C.S., Biomedical sensing by the use of intelligent polymers, Encyclopedia of Smart Materials (M. Schwartz, ed.), John Wiley and Sons, New York, p. 95-111, 2002.
7. Shen, J., Development and Characterization of Thick-Film Printed Electrochemical Biosensors, Doctoral dissertation, Case Western Reserve University, Cleveland, 2007.
8. Malhotra, B.D., and Chaubey, A., Biosensors for clinical diagnostics industry, Sensors and Actuators B 91, p. 117-127, 2003.
9. Chou, L.C.S., and Liu, C.C., Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection, Sensors and Actuators B 110, p. 204-208, 2005.
10. Shen, J., and, C.C., Development of a screen-printed cholesterol biosensor: Comparing the performance of gold and platinum as the working electrode material and fabrication using a self-assembly approach, Sensors and Actuators B 120, p. 417-425, 2007.
11. Kumar, A., Pandey, R.R., and Brantley, B., Tetraethylorthosilicate film modified with protein to fabricate cholesterol biosensor, Talanta 69, p. 700-705, 2006.
12. Li, G., Liao, J.M., Hu, G.Q., Ma, N.Z., and Wu, P.J., Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood, Biosensors and Bioelectronics 20, p. 2140-2144, 2005.
13. Tan, X., Li, M., Cai, P., Luo, L., and Zou, X., An amperometric cholesterol biosensor based on multi-walled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film, Analytical Biochemistry 337, p. 111-120, 2005.
14. Li, J., Peng, T., and Peng, Y., A Cholesterol biosensor based on entrapment of Cholesterol oxidase in a silicic sol-gel matrix at a Prussian Blue modified electrode, Electroanalysis 15, p. 1031-1037, 2003.
15. Chaubey A., Gerard, M., Singh, V.S., and Malhotra B.D., Immobilization of lactate dehydrogenase on tetraethylorthosilicate derived sol-gel films for application to lactate biosensor, Applied Biochemistry and Biotechnology 96, p. 293-302, 2001.
16. Patel, N.G., Erlenkotter, K., Camman, K., and Chemnitius, G.C., Fabrication and characterization of disposable type lactate oxidase sensor for dairy products and clinical analysis. Sensors and Actuators B 67, p. 134-141, 2000.
17. Li, C.I., Lin, Y.H., Shih, C.L., Tsaur, J.P., and Chau, L.K., Sol-gel encapsulation of lactate dehydrogenase for optical sensing of L-lactate, Biosensors and Bioelectronics 17, p. 323-330, 2002.
18. Gambhir, A., Gerard, M., Mulchandani, A.K., and Malhotra, B.D., Co-immobilization of urease and glutamate dehydrogenase in electrochemically prepared plypyrrole-polivinyl sulphonate films, Applied Biochemistry and Biotechnology 96, p. 249-258, 2001.
19. Ho, W.O., Krause, S., McNeil, C.J., Pritchart, J.A., Armstrong, R.D., Athey, D., and Rawson, K, Electrochemical sensor for measurement of urea and creatinine in serum based on impedance measurement of enzyme-catalysed polymer transformation, Analytical Chemistry 71, p. 1940-1946, 1999.
20. Killard, A.J., and Smyth, M.R., Creatinine biosensors: principles and designs, Tibtech 18, p. 433-437, 2000.
21. Luo, Y.C., Do, J.S., and Liu, C.C., An amperometric uric acid biosensor based on modified Ir–C electrode, Biosensors and Bioelectronics 22, p. 482-488, 2006.
22. Zhang, F., Li, C., Li, X., Wang, X., Wan, Q., Xian, Y., Jin, L., and Yamamoto K., ZnS quantum dots derived a reagentless uric acid biosensor, Talanta 68, p. 1353-1358, 2006.
23. Han, J.H., Boo, H., Park, S., and Chun, T.D., Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor, Electrochimica Acta 52, p. 1788-1791, 2006.
24. Akylmaz, E., and Dickaya, E., A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum, Talanta 53, p. 505-509, 2000.
25. Minnuni, M., Tombelli, S., Scielzi, R., Mannelli, I., Mascini, M., and Gaudiano, C., Detection of beta-thalassemia by DNA piezoelectric biosensor coupled with polymerase chain reaction, Analytica Chimica Acta 481, p. 55-64, 2003.
26. Maruyama, K., Motonaka, J., Mishima, Y., Matsuzaki, Y., Nakabayashi, I., and Nakabayashi, Y., Detection of target DNA by electrochemical method, Sensors and Actuators B 76, p. 215-219, 2001.
27. Patolsky, F., Lichtenstein, A., and Willner, I., Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single base mismatches by tagged liposomes, Journal of the American Chemical Society 123, p. 5194-5205, 2001.
28. Minnuni, M., Tombelli, S., Mascini, M., Bilia, A., Bergonzi, M.C., and Vincieri, F.F., An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening, Talanta 65, p. 578-585, 2005.
29. Tang, D.P., Yuan, R., Chai, Y.Q., Dai, J.Y., Zhong, X., and Liu, Y., A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy, Bioelectrochemistry 65, p. 15-22, 2004.
30. Diaz-Gonzalez, M., Hernandez-Santos, D., Gonzalez-Garcia, M.B., and Costa-Garcia, A., Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes, Talanta 65, p. 565-573, 2005.
31. Dai, Z., Yan, F., Chen, J., and Ju, H., Reagentless amperometric immunosensors based on direct electrochemistry of Horseradish Peroxidase for determination of carcinoma antigen-125, Analytical Chemistry 75, p. 5429-5434, 2003.
32. Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F., and Rusling, J. F., Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers, Journal of the American Chemical Society128, p.11199-11205, 2006.
33. Ionescu, R.E., Cosnier, S., Herrmann, S., and Marks, R. S., Amperometric immunosensor for the detection of anti-West Nile virus IgG,
Analytical Chemistry 79, p. 8662-8668, 2007.
34. Deisingh, A.K., and Thompson, M., Biosensors for the detection of bacteria, Canadian Journal of Microbiology 50, p. 69-77, 2004.
35. Donaldson, K.A., Kramer, M.F., and Lim, D.V., A rapid detection method for Vaccinia virus, the surrogate for smallpox virus, Biosensors and Bioelectronics 20, p. 322-327, 2005.
36. Yang, L., Li, Y., Erf, G. F., Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7, Analytical Chemistry 76, p. 1107-1113, 2004.
37. Xu, G.X., Ye, X.S., Qin, L.F., Xu, Y., Li, Y., Li, R., and Wang, P., Cell-based biosensors based on light-addressable Potentiometric sensors for single cell monitoring, Biosensors and Bioelectronics 20, p. 1757-1763, 2005.
38. Rodriguez-Mozaz, S., Marco, M.P., de Alda, M.J.L., and Barcelo, D., Biosensors for environmental application: future development trends, Pure and Applied Chemistry 76, p. 723-752, 2004.
39. D’Souza S.F., Microbial biosensors, Biosensors and Bioelectronics 16, p. 337-353, 2001.
40. Rodriguez-Mozaz, S., Marco, M.P., de Alda, M.J.L., and Barcelo, D., Biosensors for environmental monitoring of endocrine disruptors: a review article, Analytical and Bioanalytical Chemistry 378, p. 588-598, 2004.
41. Mallat, M., Barzen, C., Abuknesha, R., Gauglitz, G., and Barcelo, D., Part per trillion level determination of isoproturon in certified and estuarine water samples with a direct optical immunosensor, Analytica Chimica Acta 426, p. 209-216, 2001.
42. Mallat, M., Barzen, C., Abuknesha, R., Gauglitz, G., and Barcelo, D., Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection, Analytica Chimica Acta 426, p. 165-171, 2001.
43. Petanen, T., and Romantschuk, M., Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extract, Analytica Chimica Acta 456, p. 55-61, 2002.
44. Parellada, J., Narvaez, A., Lopez, M.A., Dominguez, E., Fernandez, J., Pavlov, V., Katakis, I., Amperometric immunosensors and enzyme electrodes for environmental applications, Analytica Chimica Acta, 362, p. 47-57, 1998.
45. Munteanu, F.D., Lindgren, A., Emneus, J., Gorton, L., Ruzgas, T., Csoregi, E., Ciucu, A., Van Huystee, R.B., Gazaryan, I.G., and Lagrimini, L.M., Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidase, Analytical Chemistry 70, p. 2596-2600, 1998.
46. Bromage, E.S., Vadas, G.G., Harvey, E., Unger, M.A., and Kaattari, S.L., Validation of an antibody-based biosensor for rapid quantification of 2,4,6-Trinitrotoluene (TNT) contamination in ground water and river water, Environmental Science and Technology 41, p. 7067-7072, 2007.
47. Terry, L.A., White, S.F., and Tigwell, L.J., The application of biosensors to fresh produce and the wider food industry, Journal of Agricultural and Food Chemistry 53, p. 1309-1316, 2005.
48. Inaba, Y., Tokishita, S., Hamada-Sato, N., Kobayashi, T., Imada, C., Yamagata, H., and Watanabe, E., Development of agmatine sensor using the combination of putrescine oxidase and agmatinase for squid freshness, Biosensors and Bioelectronics 20, p. 833-840, 2004.
49. Yano, Y., Yokoyama, K., Tamiya, E., and Karube, I., Direct evaluation of meat spoilage and the progress of aging using biosensors, Anlytica Chimica Acta 320, p. 269-276, 1996.
50. Hayashi, K., Okugawa, T., Kozuka, Y., Sasaki, S., Ikebukuro, K., and Karube, I., Novel measurement of hypoxanthine in fish using direct measurement probe and chemiluminescence flow injection analysis, Journal of Food Science 61, p. 736-740, 1996.
51. Jawaheer, S., White, S.F., Rughooputh, S.D.D.V., and Cullen, D.C., Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality, Biosensors and Bioelectronics 18, p. 1429-1437, 2003.
52. Dutta, S., Padhye, S., Narayanaswamy, R., Persaud, K.C., An optical biosensor employing tiron-immobilized polypyrrole films for estimating monophenolase activity in apple juice, Biosensors and Bioelectronics 16, p. 287-294, 2001.
53. Abayomi, L.A., Terry, L.A., White, S.F., and Warner, P.J., Development of a disposable pyruvate biosensor to determine pungency in onions (Allium cepa L), Biosensors and Bioelectronics 21, p. 2176-2179, 2006.
54. Arif, M., Setford, S.J., Burton, K.S., Tothill, I.E., L-Malic acid biosensor for field-based evaluation of apple, potato, and tomato horticultural produce, Analyst 127, p. 104-108, 2002.
55. Verma, N., and Singh, M., A disposable microbial based biosensor for quality control in milk, Biosensors and Bioelectronics 18, p. 1219-1224, 2003.
56. Scott, A.O., Biosensors for food analysis, The Royal Society of Chemistry, London, 1998.
57. Pogacnik, L., and Franko, M., Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor, Biosensors and Bioelectronics 18, p. 1-9, 2003.
58. Hall, R.H., Biosensor technologies for detecting microbial foodborne hazards, Microbes and Infection 4, p. 425-432, 2002.
59. Patel, P.D., (Bio)sensors for measurement of analytes implicated in food safety: a review, Trends in Analytical Chemistry 21, p. 96-115, 2002.
60. Shah, J., and Wilkins, E., Electrochemical biosensors for detection of biological warfare agents, Electrolysis 15, p. 157-167, 2003.
61. Paddle, B.M., Biosensors for chemical and biological agents of defence interest, Biosensors and Bioelectronics 11, 1079-1113, 1996.
62. Lei, Y., Mulchandani, P., Chen, W., Wang, J., and Mulchandani, A., Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophoporous nerve agents with p-nitrophenyl substituent, Biotechnology and Bioengineering 85, p. 706-713, 2004.
63. Naimushin, A.N., Soelberg, S.D., Nguyen, D.K., Dunlap, L., Bartholomew, D., Elkind, J., Melendez, J., and Furlong, C.E., Detection of Staphylococcus aureus enterotoxins B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor, Biosensors and Bioelectronics 17, p. 573-584, 2002.
64. Mehrvar, M., and Abdi, M., Recent developments, characteristics, and potential applications of electrochemical biosensors, Analytical Sciences 20, p. 1113-1126, 2004.
65. Bard, A.J., and Faulkner, L.R., Electrochemical methods: Fundamentals and applications, 2nd edition, John Wiley and Sons, Inc, New York, 2001.
66. Lupu, A., Valsesia, A., Bretagnol, F., Colpo, P., and Rossi F., Development of a potentiometric biosensor based on nanostructured surface for lactate determination, Sensors and Actuators B 127, p. 606-612, 2007.
67. Hassan, S.S.M., El-Baz, A.F., and Abd-Rabboh, H.S.M., A novel potentiometric biosensor for selective l-cysteine determination using l-cysteine-desulfhydrase producing Trichosporon jirovecii yeast cells coupled with sulfide electrode, Analytica Chimica Acta 602, p. 108-113, 2007.
68. Kuralay, F., Özyörük, H., and Yıldız, A., Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film,
Sensors and Actuators B 109, p. 194-199, 2005.
69. Liao, C.W., Chou, J.C., Sun, T.P., Hsiung, S.K., and Hsieh, J.H., Preliminary investigations on a glucose biosensor based on the potentiometric principle, Sensors and Actuators B 123, p. 720-726, 2007.
70. Radomska, A., Bodenszac, E., Glab, S., and Koncki, R., Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis, Talanta 64, p. 603-608, 2004.
71. D’Orazio, P., Biosensors in clinical chemistry, Clinica Chimica Acta 334, p. 41-69, 2003.
72. Calvo, E.J., and Danilowicz, C., Amperometric enzyme electrodes, Journal of the Brazilian Chemical Society 8, p. 563-574, 1997.
73. Cullen, D., Sethi, R., Lowe, C., A multi-analyte miniature conductance biosensor, Analytica Chimica Acta 231, p. 33-40, 1990.
74. Yagiuda, K., Hemmi, A., Ito, S., Asano, Y., Fushinuki, Y., Chen, C.Y., and Karube, I., Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine, Biosensors and Bioelectronics 11, p. 703-707, 1996.
75. Laschi, S., and Mascini, M., Planar electrochemical sensors for biomedical applications, Medical Engineering and Physics 28, p. 934-943, 2006.
76. Pijanowska, D.G., and Torbicz, W., pH-ISFET based urea biosensor, Sensors and Actuators B 44, p. 370-376, 1997.
77. Luppa, P.B., Sokoll, L.J., and Chan, D.W., Immunosensors: principles and applications to clinical chemistry, Clinica Chimica Acta 314, p. 1-26, 2001.
78. Selvanayagam, Z.E., Neuzil, P., Gopalakrishnakone, P., Sridhar, U., Singh, M., and Ho, L.C., An ISFET-based immunosensor for the detection of bungarotoxin, Biosensors and Bioelectronics 17, p. 821-826, 2002.
79. Wolfbeis, O.S., Fiber-optic chemical sensors and biosensors, Analytical Chemistry 76, p. 3269-3284, 2004
80. Leung, A., Shankar, P.M., and Mutharasan, R., A review of fiber-optic biosensors, Sensors and Actuators B 125, p. 688-703, 2007.
81. Ramanathan, K., Rank, M., Svitel, J., Dzgoev, A., and Danielsson, B., The development and applications of thermal biosensors for bioprocess monitoring, Trends in Biotechnology 17, p. 499-505, 1999.
82. Ramanathan, K., Jönsson, B.R., and Danielsson, B., Sol–gel based thermal biosensor for glucose, Analytica Chimica Acta 427, p. 1-10, 2001.
83. Zhang, Y., and Tadigadapa, S., Calorimetric biosensors with integrated microfluidic channels, Biosensors and Bioelectronics 19, p. 1733-1743, 2004.
84. Cavic, B.A., Hayward, G.L., and Thompson, M., Acoustic waves and the study of bio-chemical macromolecules and cells at the sensor-liquid interface, Analyst 124, p. 1405-1420, 1999.
85. Janshoff, A., Galla, H.J., and Steinem, C., Piezoelectric mass-sensing devices as biosensors: an alternative to optical biosensors?, Angewandte Chemie International Edition 39,p. 4004-4032, 2000.
86. Kissinger, P.T., Biosensors: a perspective, Biosensors and Bioelectronics 20, p. 2512-2516, 2005.
87. Winter, W.E., A rosetta stone for insulin treatment: self-monitoring of blood glucose, Clinical Chemistry 50, p. 985-987, 2004.
88. Kissinger, P.T., Introduction to amperometric biosensor configurations, Current Separations 16, p. 101-103, 1997.
89. Lacher, N.A., Lunte, S.M., and Martin, R.S., Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid gas/poly(dimethylsiloxane) device, Analytical Chemistry 76, p. 2482-2491, 2004.
90. Zhang, X.E., Screen-printing methods for biosensor production, Biosensors (J.M. Cooper and A.E.G. Cass, eds.), 2nd edition, Oxford University Press, Oxford, p. 41-58, 2004.
91. White, N.M., and Turner, J.D., Thick film sensors: past, present, and future, Measurement Science and Technology 8, p, 1-20, 1997.
92. Renedo, O.D., Alonso-Lomillo, M.A., and Martínez, M.J.A., Recent developments in the field of screen-printed electrodes and their related applications, Talanta 73, p. 202-219, 2007.
93. Kudo, H., Sawada, T., Kazawa, E., Yoshida, H., Iwasaki, Y., Mitsubayashi, K., A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques, Biosensors and Bioelectronics 22, p. 558-562, 2006.
94. Suzuki, H., Advances in the microfabrication of electrochemical sensors and systems, Electroanalysis 12, p. 703-715, 2000.
95. Newman, J.D., and Turner, A.P.F., Home blood glucose biosensors: a commercial perspective, Biosensors and Bioelectronics 20, p. 2435-3453, 2005.
96. World Health Organization (WHO), Diabetes: fact sheet, September 2006, http://www.who.int/mediacentre/factsheets/fs312/en/index.html, accessed on December 2007.
97. Centers for Disease Control and Prevention (CDC), National Diabetes Fact Sheet, 2005, http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2005.pdf, accessed on December 2007.
98. American Diabetes Association (ADA), Self-monitoring of blood glucose, Diabetes Care 17, p. 81-86, 1994.
99. Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care 27, p. 1047-1053, 2004.
100. King, H., Aubert, R.E., and Herman, W.H., Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections, Diabetes Care 21, p. 1414-1431, 1998.
101. Wei, J.N., Chuang, L,M., Lin, R.S., Chao, C.L., and Sung, F.C., Prevalence and hospitalization rates of diabetes mellitus in Taiwan, 1996-2000, Taiwan Journal of Public Health 21, p.173-180, 2002.
102. Taiwanese Department of Health, Taiwan Yearbook 2006: Public Health, Government Information Office, 2006, http://www.gio.gov.tw/taiwan-website/5-gp/yearbook/16PublicHealth.htm, accessed on December 2007.
103. European Medical Device Manufacturer, Sensing growth in the medical biosensor market, Medical Device Link, October 1999, http://www.devicelink.com/emdm/archive/99/10/inews.html, accessed on December 2007.
104. Mendosa, D., On-line diabetes resources: blood meters, December 2007, http://mendosa.com/meters.htm, accessed on December 2007.
105. Global Consulting Network, The U.S. blood glucose monitoring market – overview, June 2004, http://www.globalconsultingnetwork.com/reports/US Market - Blood Glucose Monitoring (June 2004).pdf, accessed on December 2007.
106. Frost & Sullivan Sensors and Instrumentation Research and Consulting, Biosensor markets driven by demand and technological advances, article in Sensors Magazine, November 2007, http://www.sensorsmag.com/sensors/Sensor+News/Biosensor-Markets-Driven-by-Demand-and-Technologic/ArticleStandard/Article/detail/472373, accessed on December 2007.
107. Niu, N., Taiwan market talks: Focus: Biotech, KGI Securities, July 2007, http://blog.roodo.com/nniu/archives/cat_383791.html, accessed on December 2007.
108. Clark, L.C., Jr., and Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences 102, p. 29-45, 1962.
109. Clark, L.C., Jr., Membrane polarographic electrode system and method with electrochemical compensation, US Patent 3,539,455, 1970.
110. Updike, S.J., and Hicks, G.P., The enzyme electrode, Nature 214, p. 986-988, 1967.
111. Guilbault, G.G., and Lubrano, G.J., An enzyme electrode for the amperometric determination of glucose, Analytica Chimica Acta 64, p. 439-455, 1973.
112. Wang, J., Glucose biosensors: 40 years of advances and challenges, Electroanalysis 13, p. 983-988, 2001.
113. Gorton, L., Lindgren, A., Larsson, T., Munteanu, F.D., Ruzgas, T., and Gazaryan, I., Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Analytica Chimica Acta 400, p. 91-108, 1999.
114. Heller, A., Electrical connection of enzyme redox centers to electrodes, The Journal of Physical Chemistry 96, p. 3579-3587, 1992.
115. Degani, Y., and Heller, A., Direct electrical communication between chemically modified enzymes and metal: 1. Electron transfer from Glucose Oxidase to metal electrodes via electron relays, bound covalently to the enzyme, The Journal of Physical Chemistry 91, p. 1285-1289, 1987.
116. Willner, I., Heleg-Shabtai, V., Blonder, R., Katz, E., Tao, G., Buckmann, A.F., and Heller, A., Electrical wiring of Glucose Oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, Journal of the American Chemical Society 118, p. 10321-10322, 1996.
117. Wilson, G.S., and Hu, Y., Enzyme-based biosensors for in vivo measurements, Chemical Reviews 100, p. 2693-2704, 2000.
118. Davies, O.W.H., Leach, C.P., and Alvarez-Icaza, M., Measurement of substances in liquids, US Patent 6,733,655, 2004.
119. Davies, O.W.H., Mitchell, D., Whyte, L., and O’Reilly, T.J., Apparatus and method for controlling registration of prints steps in a continuous process for the manufacture of electrochemical sensors, International Patent WO 010948, 2004.
120. Davies, O.W.H., Hallford, J.T., Sim, A.G., and Yeudall, R.M., Enzyme print humidification in a continuous process for manufacture of electrochemical sensors, International Patent WO 039600, 2004.
121. Davies, O.W.H., Armstrong, M.G., Marshall, R., Mitchell, D., O’Reilly, T.J., Robertson, E.-L., Sim, A.G., and Yeudall, R.M., Ink composition for use in a continuous web process for the manufacture of electrochemical sensors, International Patent WO 039897, 2004.
122. McAleer, J.F., Alvarez-Icaza, M., Hall, G., Plotkin, E.V., Scott, D., and Davies, O.W.H., Disposable test strips with integrated reagent/blood separation layer, US Patent 6,241,862, 2001.
123. Davies, O.W.H., A method of reducing interferences in an electrochemical sensor using two different applied potentials, International Patent WO 045413, 2005.
124. Cui, G., Yoo, J.H., Woo, B.W., Kim, S.S., Cha, G.S., Nam, H., Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip, Talanta 54, p. 1105-1111, 2001.
125. Yuan, C.J., Hsu, C.L., Wang, S.C., and Chang, K.S., Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane, Electroanalysis 17, p. 2239-2245, 2005.
126. Sung, W.J., Na, K., Bae, Y.H., Biocompatibility and interference eliminating property of pullulan acetate/polyethylene glycol/heparin membrane for the outer layer of an amperometric glucose sensor, Sensor and Actuators B 99, p. 393-398, 2004.
127. Shen, J., Dudik L., and Liu, C.C., An Iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sensors and Actuators B 125, p. 106-113, 2007.
128. Ming, L., Xi, X., and Liu, J., Electrochemically platinized carbon paste enzyme electrode, Biotechnology Letter 28, p. 1341-1345, 2006.
129. Cass, A.E.G., Davis, G., Francis, G.D., Hill, H.A.O., Aston, W.J., Higgins, J., Plotkin, E.V., Scott, L.D.L., Turner, and A.P.F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Analytical Chemistry 56, p. 667-671, 1984.
130. Gao, Z., Xie, F., Sharrif, M., Arshad, M., and Ying, J. Y., A disposable glucose biosensor based on diffusional mediator dispersed in nanoparticulate membrane on screen-printed carbon electrode, Sensors and Actuators B 111-112, p. 339-346, 2005.
131. Lee, S.H., Fang, H.Y., and Chen, W.C., Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture, Sensor and Actuators B 117, p. 236-243, 2006.
132. Zhu, J., Zhu, Z., Lai, Z., Wang, R., Guo, X., Wu, X., Zhang, G., Zhang, Z., Wang, Y., and Chen, Z., Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on Prussian Blue layer, Sensors 2, p. 127-136, 2002.
133. Huang, Y.C., Shen, T.Y.S., Biosensor with multiple sampling ways, US Patent 6,923,894, 2005.
134. Carter, N.F., Chambers, G.R., Hughes, G.J., Scott, S., Sanghera, G.S., and Watkin, J.L., Electrochemical sensor, US Patent 5,628,890, 1997.
135. Pollman, K.H., Gerber, M.T., Kost, K.M., Ochs, M.L., Walling, D., Bateson, B.E., Kuhn, L.S., and Han, C.N.A., Enzyme electrode system, US Patent 5,288,636, 1994.
136. Miscoria, S.A., Desbrieres, J., Barrera, G.D., Labbe, P., and Rivas, G.A., Glucose biosensor based on the layer-by-layer self-assembling of glucose oxidase and chitosan derivatives on a thiolated gold surface, Analytica Chimica Acta 578, p. 137-144, 2006.
137. Mashazi, P.N., Ozoemena, K.I., and Nyokong, T., Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor, Electrochimica Acta 52, p. 177-186, 2006.
138. Lin, Y., Lu, F., Tu, Y., and Ren, Z., Glucose biosensors based on carbon nanotubes nanoelectrode ensembles, Nano Letters 4, No. 2, 191-195, 2004.
139. Zhang, W., Huang, Y., Dai, H., Wang, X., Fan, C., and Li, G., Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors, Analytical Biochemistry 329, p. 85-90, 2004.
140. Hill, B., Accu-Chek® Advantage: Electrochemistry for diabetes management, Current Separations 21, p. 45-48, 2005.
141. Davies, O.W.H., Rapid response glucose sensor, European Patent Application EP 1394535 A1, 2004.
142. Johnson and Johnson LifeScan, Frequently Asked Question, http://www.lifescan.com/company/contact/faq/products#accurate, accessed on December 2007.
143. Wang, J., Tian, B., Nascimento, V.B., and Angnes, L., Performance of screen-printed carbon electrodes fabricated from different carbon inks, Electrochimica Acta 43, p. 3459-3465, 1998.
144. Cui, G., Yoo, J.H., Lee, J.S., Yoo, J., Uhm, J.H., Cha, G.S., and Nam, H., Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes, Analyst 126, p. 1399-1403, 2001.
145. Albareda-Sirvent, M., Merkoci, A., and Alegret, S., Thick-film biosensors for pesticides produced by screen-printing of graphite-epoxy composite and biocomposite pastes, Sensors and Actuators N 79, p. 48-57, 2001.
146. Wei, H., Sun, J.J., Xie, Y., Lin, C.G., Wang, Y.M, Yin, W.H., and Chen, G.N., Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure, Analytica Chimica Acta 588, p. 297-303, 2007.
147. Ghamouss, F., Tessier, P-Y., Djouadi, M.A., Besland, M-P., and Boujtita, M., Examination of the electrochemical reactivity of screen printed carbon electrode treated by radio-frequency argon plasma, Electrochemistry Communications 9, p.1798-1804, 2007.
148. Frederick, K.R., Tung, J., Emerick, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S., Chakraborty, S., Schopter, L.M., and Massey, V., Glucose oxidase from Aspergillus niger, The Journal of Biological Chemistry 265, p. 3793-3802, 1990.
149. Gibson, Q.H., Swoboda, B.E.P., and Massey, V., Kinetics and mechanism of action of glucose oxidase, The Journal of Biological Chemistry 238, p. 3927-33934, 1964.
150. Liaudet, E., Battaglini, F., and Calvo, E.J., Electrochemical study of sulphonated ferrocenes as redox mediators in enzyme electrode, Journal of Electroanalytical Chemistry 293, p. 55-68, 1990.
151. Magner, E., Trends in electrochemical biosensors, Analyst 123, p. 1967-1970, 1998.
152. White, B.E., Parks, R.A., Ritchie, P.G., and Svetnik, V., Biosensing meter with fail/safe procedures to prevent erroneous indications, US Patent 5,352,351, 1994.
153. Mendosa, D., Stripping down the cost of testing, 2005, http://mendosa.com/metercolumn1.htm, accessed on January 2008.

QR CODE