簡易檢索 / 詳目顯示

研究生: Hoang The Hop
Hoang The Hop
論文名稱: 利用相位可調合成傳輸線實現寬頻巴特勒矩陣之波束成型網路
Realization of broadband Butler matrix-based beam-forming networks using reconfigurable STLs
指導教授: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy-Nam Chu
口試委員: 廖文照
Wen-Jiao Liao
陳晏笙
Yen-Sheng Chen
朱輝南
Chu Huy Nam
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 78
中文關鍵詞: 連續性的波束切換能力可調式功率分配器相移器相位可重製合成傳輸線
外文關鍵詞: Continuous beam-steering capability, tunable power divider, phase shifter, phase reconfigurable synthesized transmission lines
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了同時提供具寬頻特性與波束可調性的訊號給個人行動裝置,相位陣列天線需要對頻寬和輻射場型覆蓋範圍進行進一步的調整。近年來學術界、工業界和政府實驗室為了實現波束成型網路,在研究上付出了大量的努力。本文提出了一款基於4×4巴特勒矩陣的寬頻波束成形網絡(BFN),目的在實現波束控制的效果,並對該設計進行模擬與實作驗證。為實現連續性的波束控制,本文應用一種有效的激發方法,該方法同時激發了巴特勒矩陣的兩個波束端口,與傳統的 BFN(如:Butler、Nolen和Blass矩陣版本的設計方式)相比,本文提出的設計可以透過減少輸入端口數量,以實現連續性的波束掃描。所提出之設計具有寬頻特性,同時滿足低成本、低損耗、覆蓋空間廣的應用情境。
實現該設計的主要結構為寬頻可調式功率分配器 (TPD),其功率分配比(PDR)理論上可達–∞到+∞。為了實現所需的TPD設計,論文中提出了一款基於嵌入式變容器結構的相位可重製合成傳輸線 (PRSTL)的設計,以提供TDP所需的相位移動特性。該傳輸線結構包含一組共用均勻線之間串接的左/右手結構。集總網絡的電容器由變容二極管取代,以達到調整相位響應的目的,而均勻線則會產生所需的額外相位延遲。與市面上常見的相移器相比,本文所提出的相移器設計具有結構簡單、低成本、低功耗的優點,同時保持具競爭性的效能。透過使用PRSTL作為調整元件,所提出之TPD在2.16 GHz至2.64 GHz間具有低反射係數和良好的隔離度表現,且該結構的傳輸損耗結果為3.5 dB,同時在2.16 GHz到2.64 GHz的頻率範圍間,其輸出端口的漸進相移平均偏差小於20°,與理論分析結果一致。


In order to supply individual mobile devices simultaneously and selectively with high bandwidth, phased array antenna design requires improvement in bandwidth and spatial coverage. Recently, there have been extensive efforts in academia, industry, and government laboratories expended to bring beamforming networks that can fulfill this requirement to reality. In this thesis, a broadband beamforming network (BFN) based on a 4-by-4 Butler matrix with the purpose of achieving full beam-steering capability is presented and experimentally verified. To enable continuous beam-steering capability, we apply an effective excitation method that simultaneously excites two beam ports of the Butler matrix. In comparison to conventional BFN, such as switch-beam version Butler, Nolen, and Blass matrices, the proposed topology can accomplish continuous beam scanning with a reduced number of input ports. The BFN can work at a broadband frequency range and is suitable for applications requiring low-cost, low-loss, and wide spatial coverage.
The main component in fulfilling the design is a broadband tunable power divider (TPD), whose power division ratio (PDR) can be theoretically tuned from –∞ to +∞. To realize the TPD design, a new combination of phase reconfigurable synthesized transmission lines (PRSTL) constructed based on embedded varactors is presented to provide phase shifting characteristics. The topology of PRSTLs comprises a cascaded left/right-handed structure in-between a pair of common uniform lines. The capacitors of the lumped network are replaced with varactor diodes in order to adjust the phase response, and the uniform lines generate the required extra phase delay. Compared with commercial phase shifters, the proposed phase shifter has the advantages of its simple structure, low-cost, and low-power consumption, while maintaining comparable performance. By utilizing PRSTLs as tuning elements, the TPD design has a low reflection coefficient and good port to port isolation from 2.16 GHz to 2.64 GHz. The transmission loss for the new BFN design is 3.5 dB, and the average deviation of the progressive phase shift at the output port is less than 20° from 2.16 GHz to 2.64 GHz, which is highly consistent with theoretical analysis.

摘要 I Abstract III Contents V List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Literature Survey 2 1.3. Contribution 4 1.4. Chapter Outline 4 Chapter 2 Introduction to Synthesized Transmission Lines 6 2.1. Introduction 6 2.2. Broadband phased array antenna feeding network 6 2.2.1. Broadband continuous beam steering by dual beam-port excitation 6 2.2.2. 1  4 broadband Butler matrix-based beamforming network 8 2.3. Chapter summary 12 Chapter 3 Design and Implementation of Building Blocks 13 3.1. Introduction 13 3.2. Tunable Power Divider 13 3.2.1. Basic principle of operation 14 3.2.2. Wideband tunable PS 16 3.2.3. Implementation of the TPD 21 3.3. Absorptive SPDT switch 27 3.4. 4 × 4 Butler matrix 31 3.5. Summary 44 Chapter 4 Beam steering broadband phase array: System integration 45 4.1. Introduction 45 4.2. 1×4 Beam-forming network layout and circuit responses 45 4.2.1. Circuit design layout 45 4.2.2. Circuit response of selected case: ∆? = 0° 46 4.2.3. Circuit response of selected case: ∆? = 180° 47 4.2.4. Circuit response of selected case: ∆? = −180° 49 4.3. Radiation characteristics 53 4.3.1. Radiating element and measurement setup 53 4.3.2. Radiation characteristics 56 4.4. Summary 66 Chapter 5 Conclusion 67 5.1. Summary 67 5.2. Discussion and Future Works 67 References 69 Appendix 73

[1] S. Mattisson, “An Overview of 5G requirements and Future Wireless Networks,” in Proc. IEEE 43rd ESSCIRC Eur. Solid State Circuits Conf., Sep. 2017, pp. 1-6.
[2] Y. Xiong, X. Zeng and J. Li, “A tunable concurrent dual-band phase shifter MMIC for beam steering application,” IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, Jan. 3, 2020.
[3] D. Betancourt and C. Del Rio Bocio, “A novel methodology to feed phased array antennas,” IEEE Trans. Antennas Propagation., vol. 55, no. 9, pp. 2489-2494, Sep. 2007.
[4] B. Vidal, M. A. Piqueras, and J. Marti, “Multibeam photonic beamformer based on optical fibers,” IEE Electronics Letters, vol. 42, no. 17, pp. 980-981, 2006.
[5] J. Blass, “Multidirectional antenna––A new approach to stacked beams,” IRE Int. Conv. Rec., vol. 1. Mar. 1960, pp. 48-50.
[6] J. Butler, “Beam-forming matrix simplifies design of electronically scanned antennas” in Electron. Des, vol. 9, pp. 170-173, Apr. 1961.
[7] J. Nolen, “Synthesis of multiple beam networks for arbitrary illuminations”, Apr. 1965.
[8] C.-W. Wang, T.-G Ma, and C.-F. Yang, “A new plannar artificial transmission line and its applications to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp.2792-2801, 2007.
[9] Y.-S. Lin, J.-H Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, Jul. 2013.
[10] H. X. Xu, G.-M Wang and X. Wang, “Compact butler matrix using composite right/left-handed transmission line,” Electron Lett., vol. 47, pp. 1081-1082, 2011.
[11] G. A. Adamindis, I. O. Vardiambasis, M. P. Ioanidou, and T. N. Kapetanakis, “Design and implementation of single layer 4×4 and 8×8 Butler matrix for multibeam antenna arrays,” Int. J. Antennas Propag.. vol. 2019, pp. 1−12, Mar. 2019.
[12] Y.-L. Li, Q. S. Liu, S. Sun, and S. S. Gao, “A miniaturized Butler matrix based on patch hybrid couplers with cross slots,” in Proc. IEEE antennas Propag. Soc. Int. Symp. (APSURSI), Orlando, FL, USA, Jul. 2013, pp. 2145−2146.
[13] C.-J. Chen, and T.-H. Chu, “Design of a 60-GHz substrate integrated waveguide Butler matrix−A systematic approach,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 7, Jul. 2010.
[14] Y. Wang, K. Ma, and Z. Jian, “A low-loss Butler matrix using patch element and honeycomb concept on SISL platform,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 8, Aug. 2018.
[15] M. Bona, L. Manholm, J. P. Starski, and B. Svensson, “Low-loss compact Butler matrix for a microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 9, Sep. 2002.
[16] T.-H. Lin, S.-K. Hsu, and T.-L. Wu, “Bandwidth enhancement of 4×4 Butler matrix using broadband forward-wave directional coupler and phase difference compensation,” IEEE Trans. Microw. Theory Techn., vol. 61, no 12, Dec. 2013
[17] S. Karamzadeh, V. Rafii, M. Kartal, and B. S. Virdee, “Compact and broadband 4×4 SIW Butler matrix phase and magnitude error reduction,” IEEE Microw. Theory Techn., vol. 61, no. 6, pp. 2317-2324, Jun. 2013.
[18] E. Siachalou, E. Vafiadis, S. S. Guodos, T. Samaras, C. S. Koukourlis, and S. Panas, “On the design of switched-beam wideband base stations,” Antennas and Propagation Magazine, IEEE, vol. 46, pp. 158-167, 2004.
[19] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” Antennas Propag. IEEE Trans., vol. 58, no. 2, pp. 367−374, Feb. 2010.
[20] H. N. Chu and T. Ma, “An extended 4×4 Butler matrix with enhanced beam controllability and widened spatial coverage,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1301-1311, Mar. 2018.
[21] T.-Y. Chin, S.-F. Chang, J.-C Wu, and C.-C Chang, “A 250GHz compact low-pwer phased-array receiver with continuous beam steering in CMOS technology,” IEEE J.solid-State Circuits, vol. 45, no. 11, pp.2273-2282, Nov. 2010.
[22] S. Y. Zheng, W. H. Chan, and Y. S. Wong, “Reconfigurable RF quadrature patch hybrid coupler,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3349−3359, Aug. 2013.
[23] F. Lin, “A planar balanced quadrature coupler with tunable power-dividing ratio,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 6515−6526, Aug. 2018.
[24] Y. Wu, L. Jiao, B. Zhang, M. Li, W. Wang, and Y. Liu, “A new couple structure with phased-controlled power divisions of extremely-wide tunable ranges and arbitrary phase differences,” IEEE Access, vol. 6, pp. 20121-20130, Mar. 2018.
[25] B. An, G. Chaudhary, and Y. Jeong, “Wideband tunable phase shifter with low in-band phase deviation using coupled line,” IEEE Micow. Wireless Compon. Lett., vol 28, no 8, pp. 678-680, Aug. 2018.
[26] Y. Zheng and C. E. Saavedra, “Full 360 ° vector-sum phase-shifter for microwave system applications,” IEEE Trans.Circuits Syst. I., vol. 57, no. 4, pp. 752-758, Apr. 2010.
[27] H. N. Chu and T. Ma, “Tunable directional coupler with very wide tuning range of powr division ratio,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 10, pp. 652-654, Oct. 2019.
[28] H. N. Chu and T. Ma, “A coupler with wide power division ratio tuning range and flexible coupling direction,” IEEE Microw. Wireless Compon Lett., vol. 31, no. 2, Feb. 2021.
[29] K.-J Ji, “Bandwidth Enhancement of Phase Tunable Synthesized Transmission Line and Its Applications to Innovative Beam Scanning Arrays”, Master dissertation, National Taiwan Univeristy of Science and Technology, 2020.
[30] H. N. Chu, T. Heish, and T. Ma, “Reconfigurable dual-mode integrated beam-steering array,” in IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, USA, Jun. 2018.
[31] M. Muraguchi, T. Yukitake, and Y. Naito, “Optimum design of 3-dB branch-line couplers using microstrip lines,” IEEE Trans. Microw. Theory Techn., vol. MTT-31, pp 674-678, Aug. 1983.
[32] W. Liu, Z. Zhang, Z. Feng, and F. I Magdy, “A compact wideband microstrip crossover”, IEEE Micow. Wireless Compon. Lett., vol. 22, no. 5, May 2012.
[33] 周冠廷,「以雙模態左手合成傳輸線實現多款整合信號回溯/波束切換相位陣列
天線」,碩士論文,國立臺灣科技大學,民國一百零三年
[34] K. Wincza, and S. Gruszczynski, “Broadband integrate 8×8 Butler matrix utilizing quadrature couplers and Schiffman phase shifters for multibeam antennas with broadside beam,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 8, Aug. 2016.
[35] K. Ding, and A. K Ahmed, “Extension of Butler matrix number of beams based on reconfigurable couplers,” IEEE Trans. Antennas Propag., vol. 11, no. 6, pp. 623-632, Nov. 1963.

無法下載圖示 全文公開日期 2024/09/10 (校內網路)
全文公開日期 2031/09/10 (校外網路)
全文公開日期 2031/09/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE