簡易檢索 / 詳目顯示

研究生: 江哲瑋
Che-Wei Chiang
論文名稱: 三重相移控制之雙主動全橋式轉換器閉迴路設計
Closed Loop Design for Dual-Active-Bridge Converter with Triple-Phase-Shift
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 謝耀慶
Yao-Ching Hsieh
張佑丞
Yu-Cheng Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 93
中文關鍵詞: 雙主動全橋式轉換器三重相移控制法小訊號廣義狀態空間平均法相位裕度
外文關鍵詞: Dual-active-bridge converter, triple-phase-shift modulation, small signal, general average modeling, phase margin
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文主要針對使用三重相移控制法之雙主動全橋式轉換器進行閉迴路設計。文中首先介紹數種用於此架構之控制法,說明各控制法之原理與特點,包含單相移控制法、擴展相移控制法與三重相移控制法,其中三重相移控制法可控制之變數相較於其他兩者更多,相對具有最多種工作模式之組合,而本文將參考另一篇三重相移控制法寬範圍輸出電壓應用設計之論文,文中分析各工作模式之關係,並透過數學模型針對輕重載條件各別選擇不同工作模式,使輕載條件下所有開關皆可達成零電壓切換,重載條件下具有最小之電感電流峰值與有效值,達成三重相移控制法之分析與優化,而基於此優化之控制法,本文將使用其選擇之工作模式作為主要分析對象。於此基礎上首先進行功率級開迴路之小訊號模型建模與推導,並介紹所使用之方法-廣義狀態空間平均法(General Average Modeling, GAM)與整個推導流程,與傳統狀態空間平均法相比,傳統狀態空間平均法僅考慮直流項,適用於交流成分小之系統,但雙主動全橋式轉換器之電感電流為純交流訊號,因此需使用廣義狀態空間平均法以表示狀態變量之平均值,由於此方法考慮諧波成分,使用越高階次諧波會使計算複雜度大幅提升,因此本文將取其直流及一階諧波項進行推導,並於章節末列出完整推導結果。再來將介紹數位控制系統之小訊號方塊圖,與整個迴路中各增益項與其所代表之意義,並探討不同相位裕度在時域中之暫態響應狀況。接著將對各工作模式下之功率級開迴路轉移函數進行分析,以分析結果進行補償器之設計,同時亦會針對系統功能之需求進行韌體規劃,包含緩啟動、調變器之邏輯調整等。最後,實測階段將以一最大輸出功率15 kW、最大輸出電流30 A、輸入電壓750 V、輸出電壓250 V~750 V之平台測試緩啟動、穩態波形、動態負載與效率等指標,以驗證其功能與表現是否與計算及模擬相符。


This thesis focuses on the design procedure of dual-active-bridge (DAB) converter with triple-phase-shift (TPS) control. The article first presents several control schemes for this structure, and explains the char-acteristics of each scheme. Among them, triple-phase-shift can control the most variables and has the most various combination. This thesis refers to another thesis for triple-phase-shift, it analyzes and optimizes the control method to achieve zero voltage switching and minimize the peak value and effective value of inductor current. Based on the optimized control method, the selected modes are used as the main analysis object of this thesis. Next, the modeling and derivation of the power stage open loop small signal model is carried out, the method used – General Average Modeling (GAM) and the whole process are introduced. Traditional state space averaging method only considers the DC term, which is suitable for systems with smaller AC term, but the inductor current of this structure is a pure AC signal, so general average modeling needs to be used to represent the av-erage value of the state variables. The use of higher-order harmonics will greatly increase the computational complexity, so this thesis will take its DC and first-order harmonic terms for derivation, and list the complete results at the end of the chapter. Next, the small signal block diagram of digital control system will be introduced, we will discuss the meaning of every blocks, the transient response of different phase margin in time do-main. Then, the power stage open loop transfer function in each modes will be analyzed, and the compensator will be designed based on the results. At the same time, the firmware will be planned according to the require-ments of the system functions, including soft start, logic adjustment of the modulator. Finally, the experimental results will be carried out on a plat-form with maximum output power of 15 kW , input voltage 750 V, and output voltage 250 V ~ 750 V. Test items include soft start, steady state waveform, load transient, and efficiency to verify whether its functions and performance can be consistent with calculations and simulations.

摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文大綱 第二章 雙主動全橋式轉換器 2.1 雙主動全橋式轉換器架構介紹 2.2 相移控制法介紹 2.2.1 單相移控制 (SPS) 2.2.2 擴展相移控制 (EPS) 2.2.3 三重相移控制 (TPS) 2.3 單相移與三重相移之比較 第三章 三重相移控制法之小訊號建模與分析 3.1 廣義狀態空間平均法介紹 3.2 三重相移控制法之小訊號模型 3.3 數位控制迴路之小訊號分析 3.3.1 輸出電壓衰減倍率K 3.3.2 零階保持增益GZOH(s) 3.3.3 移動平均增益GM.A.(s) 3.3.4 PWM調變延遲增益Fm(s) 3.4 相位裕度之於負載對Vo暫態響應 第四章 數位控制器系統研製 4.1 電路規格 4.2 Gvφ(s)之計算結果與模擬驗證 4.2.1 輕載條件 (M=0.5) 4.2.2 重載條件 (M=0.5) 4.2.3 輕載條件 (M=1.5) 4.2.4 重載條件 (M=1.5) 4.3 補償器設計 4.4 迴路增益之計算結果與模擬驗證 4.5 緩啟動設計 4.6 數位控制規劃與設計 4.6.1 韌體流程規劃 4.6.2 PWM調變器邏輯設計 第五章 閉迴路系統模擬與實驗結果 5.1 緩啟動功能測試 5.2 穩態波形量測 5.3 動態負載測試 5.4 效率量測 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] Assadi, Seyed Amir, et al. “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on-board EV charger applications.” IEEE Transactions on Power Electronics 35.4 (2019): 4376-4387.
[2] Choi, Hyun-Jun, and Jee-Hoon Jung. “Practical design of dual active bridge converter as isolated bi-directional power interface for solid state transformer applications.” Journal of Electrical Engineering and Technology 11.5 (2016): 1265-1273.
[3] G. Fontes, C. Turpin, S. Astier and T. A. Meynard, “Interactions Be-tween Fuel Cells and Power Converters: Influence of Current Har-monics on a Fuel Cell Stack,” in IEEE Transactions on Power Elec-tronics, vol. 22, no. 2, pp. 670-678, March 2007.
[4] Bifaretti, Stefano, et al. “Advanced power electronic conversion and control system for universal and flexible power management.” IEEE Transactions on Smart Grid 2.2 (2011): 231-243.
[5] Schmid, J., et al. “Towards smart power networks: lessons learned from European research FP5 projects.” European Commission Di-rectorate-General for Research Information and Communication Unit (2005).
[6] Barone, G., et al. “A dual active bridge dc-dc converter for application in a smart user network.” 2014 Australasian Universities Power En-gineering Conference (AUPEC). IEEE, 2014.
[7] Tomas Manez, K, Advances in Bidirectional DC-DC Converters for Future Energy Systems. Technical University of Denmark, 2018.
[8] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, “Dual Ac-tive Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle With Charging Current Containing Low Frequency Ripple,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, Dec. 2015.
[9] J. Everts, F. Krismer, J. Van den Keybus, J. Driesen and J. W. Kolar, “Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters,” in IEEE Transactions on Power Electron-ics, vol. 29, no. 8, Aug. 2014.
[10] H. van Hoek, M. Neubert and R. W. De Doncker, “Enhanced Modu-lation Strategy for a Three-Phase Dual Active Bridge—Boosting Effi-ciency of an Electric Vehicle Converter,” in IEEE Transactions on Power Electronics, vol. 28, no. 12, Dec. 2013.
[11] L. Roggia, L. Schuch, J. E. Baggio, C. Rech and J. R. Pinheiro, “In-tegrated Full-Bridge-Forward DC–DC Converter for a Residential Microgrid Application,” in IEEE Transactions on Power Electronics, vol. 28, no. 4, April 2013.
[12] F. Krismer and J. W. Kolar, “Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application,” in IEEE Transactions on Industrial Electronics, vol. 57, no. 3, March 2010.
[13] Silva, W. W. A. G., et al. “Study of the application of bidirectional dual active bridge converters in dc nanogrid energy storage systems.” 2013 Brazilian Power Electronics Conference. IEEE, 2013.
[14] Gonzalez Ortega, Alberto, “Dual active bridge DC-DC converter in photovoltaic applications,” Science in Electrical and Computer Engi-neering in the Undergraduate College of the University of Illinois at Urbana-Champaign, 2018
[15] 陳怡瑄,三重相移控制之寬範圍雙主動全橋式電路研製,國立臺灣科技大學電子工程系碩士論文,2021年
[16] Bacha, Seddik, Iulian Munteanu, and Antoneta Iuliana Bratcu. “Power electronic converters modeling and control.” Advanced textbooks in control and signal processing 454.454, pp. 98-107, 2014.
[17] Iqbal, Mohammad Tauquir, and Ali Iftekhar Maswood. “An explicit discrete-time large-and small-signal modeling of the dual active bridge DC–DC converter based on the time scale methodology.” IEEE Journal of Emerging and Selected Topics in Industrial Electronics 2.4 (2021): 545-555.
[18] Qin, Hengsi, and Jonathan W. Kimball. “Generalized average model-ing of dual active bridge DC–DC converter.” IEEE Transactions on power electronics 27.4 (2011): 2078-2084.
[19] Safayatullah, Md, and Issa Batarseh. “Small signal model of dual ac-tive bridge converter for multi-phase shift modulation.” 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020.
[20] Bai, Hua, and Chris Mi. “Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC con-verters using novel dual-phase-shift control.” IEEE Transactions on power electronics 23.6 (2008): 2905-2914.
[21] Hou, Nie, and Yun Wei Li. “Overview and comparison of modulation and control strategies for a nonresonant single-phase du-al-active-bridge DC–DC converter.” IEEE Transactions on Power Electronics 35.3 (2019): 3148-3172.
[22] Alonso, Alberto Rodríguez Rodríguez, et al. “An overall study of a Dual Active Bridge for bidirectional DC/DC conversion.” 2010 IEEE Energy Conversion Congress and Exposition. IEEE, 2010.
[23] D. Das and K. Basu, “Modulation Strategy to Minimise RMS and Peak Currents in Dual Active Bridge Converter,” 2020 IEEE Energy Con-version Congress and Exposition (ECCE), 2020.
[24] Zheng, Mingkai, et al. “Open-circuit fault diagnosis of dual active bridge DC-DC converter with extended-phase-shift control.” IEEE Access 7 (2019): 23752-23765.
[25] B. Zhao, Q. Yu and W. Sun, “Extended-Phase-Shift Control of Iso-lated Bidirectional DC–DC Converter for Power Distribution in Mi-crogrid,” in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4667-4680, Nov. 2012.
[26] Kim, Myoungho, et al. “A dual-phase-shift control strategy for du-al-active-bridge DC-DC converter in wide voltage range.” 8th Inter-national Conference on Power Electronics-ECCE Asia. IEEE, 2011.
[27] Shi, Haochen, et al. “Minimum-reactive-power scheme of du-al-active-bridge DC–DC converter with three-level modulated phase-shift control.” IEEE Transactions on Industry Applications 53.6 (2017): 5573-5586.
[28] Hebala, Osama M., et al. “Generalized small-signal modelling of dual active bridge dc/dc converter.” 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2018.
[29] Mueller, Jacob A., and Jonathan W. Kimball. “An improved general-ized average model of DC–DC dual active bridge converters.” IEEE Transactions on Power Electronics 33.11 (2018): 9975-9988.
[30] Han, Weijian, and Luca Corradini. “Analytical small-signal transfer functions for phase shift modulated dual active bridge converters us-ing phasor transformation.” 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018.
[31] Shah, Suyash Sushilkumar, and Subhashish Bhattacharya. “Control of active component of current in dual active bridge converter.” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2018.
[32] Parini, M., Snehal Meshram, and S. R. Wagh. “Dynamic Phasor Based Compensator Design for Dual Active Bridge Using K Factor Ap-proch.” NPEC-2015, IITB.
[33] Shah, Suyash Sushilkumar, and Subhashish Bhattacharya. “Large & small signal modeling of dual active bridge converter using improved first harmonic approximation.” 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017.
[34] Shan, Zhenyu, et al. “Simplified load-feedforward control design for dual-active-bridge converters with current-mode modulation.” IEEE Journal of Emerging and Selected Topics in Power Electronics 6.4 (2018): 2073-2085.
[35] Bai, Hua, et al. “The dynamic model and hybrid phase-shift control of a dual-active-bridge converter.” 2008 34th Annual Conference of IEEE Industrial Electronics. IEEE, 2008.
[36] Corradini, Luca, et al. Digital control of high-frequency switched-mode power converters. John Wiley & Sons, pp. 65-70, 2015.
[37] Kim, Min-Soo, et al. “Soft Start-Up Control Strategy for Dual Active Bridge Converter with a Supercapacitor.” Energies 13.16 (2020): 4083.
[38] Z. Zhu, J. Liu, F. Xiao, P. Chen and Q. Ren, “Start-up Procedure and Soft-starting Strategy for Dual Active Bridge Converter,” 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020.
[39] Giuliani, Francesco, et al. “Soft-starting procedure for dual active bridge converter.” 2015 IEEE 16th Workshop on Control and Mod-eling for Power Electronics (COMPEL). IEEE, 2015.
[40] Sathishkumar, P.; Krishna, T.N.V.; Khan, M.A.; Zeb, K.; Kim, H.-J, “Digital Soft Start Implementation for Minimizing Start up Transients in High Power DAB-IBDC Converter,” Energies 2018.

無法下載圖示 全文公開日期 2025/08/31 (校內網路)
全文公開日期 2025/08/31 (校外網路)
全文公開日期 2025/08/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE