簡易檢索 / 詳目顯示

研究生: 黃柏棋
PO-CHI HUANG
論文名稱: 丙烯腈及氨酯-丙烯酸丁酯寡聚物掺和聚偏氟乙烯六氟丙烯長鏈高分子的複合電解質及其固態電池充放電
The composite electrolytes containing acrylonitrile and urethane-acrylate oligomers blended with PVdF-HFP long-chain polymer along with their solid state battery cycling
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 陳良益
Liang-Yih Chen
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 98
中文關鍵詞: 聚丙烯腈氨酯-丙烯酸丁酯固態鋰金屬電池固態聚合物電解質複合電解質可逆加成-斷裂鏈轉移法
外文關鍵詞: polyacrylonitrile, polyurethane acrylate, solid-state lithium-metal battery, solid polymer electrolyte, omposite electrolyte, reversible addition-fragmentation chain transfer polymerization
相關次數: 點閱:401下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

丙烯腈(AN)單體與2-丙烯酸十二烷基酯(DA) 利用可逆加成-斷裂練轉移法(RAFT)聚合成的PAN寡聚物為主體,寡聚物的分子量受RAFT聚合控制,其中最佳比例為AN:DA:RAFT:AIBN = 50:3:40:30 (w/w),並且與長鏈高分子聚偏氟乙烯-六氟丙烯共聚物(PVdF-HFP)做掺合,並加入30 wt%的雙氟磺醯亞胺鋰 (LiFSI)、10 wt%的Li6.75La3Zr1.75 Ta0.25O12 (LLZTO)與相比PAN比例為0.22之氨酯-丙烯酸丁酯(PUA),製備獨立膜材複合固態電解質。以此比例電解質做鋰金屬電池充放測試及電解質膜材特性量測,並且與未添加PUA之複合固態鋰金屬電池做比較。
對於兩種複合電解質從掃描式電子顯微鏡(SEM)下可發現皆有三明治的構造,其中以有添加PUA之複合電解質比較特別,最外層為PVdF-HFP再由PUA包覆其中,中間主要以PAN為主體形成三明治的結構,在室溫下導電率可達6×104 S cm−1,而其鋰離子遷移常數為0.343,電位窗口為4.7 V。
所使用的陰極為磷酸鋰鐵而陽極則使用鋰金屬,再將複合固態電解質放置中間組成固態鋰金屬電池,電位窗口在2.0-4.0 V,並且在室溫下以0.1 C、0.3 C、0.5 C以恆流電流進行充放電測試,其中0.1C電容量166.1 mAh g−1、0.3C電容量131.5 mAh g−1而0.5C電容量112.6 mAh g−1。
最後使用比例較高之PUA來做比較,並且在室溫下以0.5C以恆流電流進行充放電測試,電容量達118.7 mAh g−1。


Acrylonitrile(AN) is copolymerized with dodecyl acrylate(DA) using reversible addition-fragmentation chain transfer (RAFT) polymerization to control the degree of polymerization. Use RAFT polymerization to control its molecular weight, the best ratio of PAN is AN:DA:RAFT:AIBN = 50:3:40:30 (w/w), and it is combined with the long-chain polymer poly(vinylidene fluoride)-co-hexafluoropropylene (PVdF-HFP) to prepared composite solid electrolyte, and the composite solid electrolyte was used as to add 30 wt% lithium bisfluorosulfonylimide (LiFSI), 10 wt% Li6.75La3Zr1.75Ta0.25O12 (LLZTO) and PUA with a PAN ratio of 0.22 are added. . This ratio has been studied and tested for lithium metal batteries, and compared with batteries without PUA. The independent membrane electrolyte is mainly used to prove that it is an solid electrolyte.
For the two composite electrolytes, it can be found under the scanning electron microscope (SEM) that there is a sandwich structure. Among them, the composite electrolyte with added PUA is more special. The outermost layer is PVdF-HFP and then is coated with PUA. AN is used as the main body of middle to form a sandwich structure, the conductivity can reach 6×10−4 S cm−1 at room temperature, and its lithium ion transference number (tLi+) is 0.343, and the potential window (U) is 4.7 V.
Use lithium iron phosphate (LFP) as the cathode, lithium metal as the anode. The composite solid electrolyte is placed in the middle to form a solid lithium ion battery. The potential window is 2.0V-4.0V. Use 0.1 C, 0.3 C, 0.5 C to charge and discharge at room temperature. The charge and discharge test was use with a constant current. The 0.1C capacity was about 166.1 mAh g−1, the 0.3C capacity was about 131.5 mAh g−1, and the 0.5C capacity was about 112.6 mAh g−1.
At last use PUA with a ratio of 0.4 of PAN to comparison and the charge and discharge test is carried out at a constant current of 0.5C at room temperature, and the capacitance is about 118.7 mAh g−1

摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2 研究動機 4 第二章 文獻回顧 6 2.1固態電解質 6 2.1.1聚合物電解質(solid polymer electrolyte, SPE) 8 2.1.2聚丙烯腈 10 2.1.3聚氨酯丙烯酸丁酯 11 2.2陶瓷材料的添加對聚合物電解質的影響 12 2.3可逆加成-斷裂鏈轉移聚合法(RAFT) 14 第三章 實驗方法與步驟 16 3.1 實驗耗材藥品與儀器設備 16 3.1.1 實驗藥品 16 3.1.2實驗儀器與設備 18 3.1.3 材料鑑定與儀器設備 20 3.1.4電化學分析儀器設備 20 3.2實驗流程圖 21 3.2.1合成RAFT試劑 ( DBTTC ) 21 3.2.2可逆加成斷鏈鏈轉移合成聚丙烯腈 22 3.2.3可逆加成斷鏈鏈轉移合成聚合法合成聚氨酯丙烯酸丁酯 23 3.2.4可自行成膜之電解質製作 24 3.2.5電化學量測組裝流程 25 3.2.6電化學分析 26 3.3實驗方法 27 3.3.1合成RAFT試劑 ( DBTTC ) 27 3.3.2合成Poly(AN-co-DA)寡聚物固態電解質 27 3.3.3可逆加成斷鏈鏈轉移合成聚合法合成聚氨酯丙烯酸酯 28 3.3.4 CR2032電池組之前置作業 29 3.3.5固態高分子電解質離子導電率電池置備 29 3.3.6複合固態電解質鋰離子遷移常數電池置備 30 3.3.7複合固態電解質電位窗口電池置備 31 3.3.8固態鋰金屬電池置備 32 3.3.8.1磷酸鋰鐵正極置備( LiFePO4 ) 32 3.3.8.2固態鋰金屬電池 32 3.4固態電解質材料鑑定與分析 33 3.4.1差示掃描量熱法 ( DSC ) 33 3.4.2高解析度場發射掃描式電子顯微鏡 ( SEM ) 34 3.5固態電解質電化學性質分析 34 3.5.1交流阻抗分析 ( AC Impedance ) 34 3.5.2鋰離子遷移數(T+ Number) 36 3.5.3循環伏安法 ( Cyclic Voltammetry ) 38 3.5.4固態鋰金屬電池測試 38 第四章 結果與討論 39 4.1示差掃描熱分析 ( DSC ) 39 4.2複合固態電解質之SEM分析 43 4.3 複合固態電解質離子導電率 48 4.4 複合固態電解質電位窗口 51 4.5鋰離子遷移常數 ( T+ Number ) 53 4.6複合固態鋰金屬電池測試 56 4.6.1 PAN-FS固態鋰金屬電池以0.1C充放電之結果 57 4.6.2 (PAN+PUA)-FS (1:0.22) 固態鋰金屬電池以0.1C充放電之結果 60 4.6.3 (PAN+PUA)-FS (1:0.22) 固態鋰金屬電池以0.3C充放電之結果 65 4.6.4 (PAN+PUA)-FS (1:0.22) 固態鋰金屬電池以0.5C充放電之結果 68 4.6.5 (PAN+PUA)-FS (1:0.22) 固態鋰金屬電池之Rate Capacity 71 4.6.6 (PAN+PUA)-FS (1:0.4) 固態鋰金屬電池以0.5C充放電結果 72 第五章 結論 75 參考文獻 77

1. Wright, P. V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal 1975, 7 (5), 319-327.
2. Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J., Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials 2016, 28 (1), 197-206.
3. Wang, C.; Yang, Y.; Liu, X.; Zhong, H.; Xu, H.; Xu, Z.; Shao, H.; Ding, F., Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl Mater Interfaces 2017, 9 (15), 13694-13702.
4. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J.-G., Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-4456.
5. Lowe, A. B.; McCormick, C. L., Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science 2007, 32 (3), 283-351.
6. Semsarilar, M.; Perrier, S., 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nat Chem 2010, 2 (10), 811-20.
7. Pal, P.; Ghosh, A., Robust Succinonitrile Plastic Crystal-Based Ionogel for All-Solid-State Li-Ion and Dual-Ion Batteries. ACS Applied Energy Materials 2020, 3 (5), 4295-4304.
8. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 16103.
9. Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z., Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. Journal of The Electrochemical Society 2017, 164 (7), A1731-A1744.
10. Meesala, Y.; Jena, A.; Chang, H.; Liu, R.-S., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017, 2 (12), 2734-2751.
11. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D., Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science 2018, 81, 114-143.
12. Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S., Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Advanced Energy Materials 2018, 8 (18), 1800035.
13. Tarascon, J.; Armand, M., Issues and challenges facing rechargeable lithium batteries Nature 414. 2001.
14. Fenton, D.; Parker, J., Polymer 14 589;(b) Wright PV 1975 Br. Polym. J 1973, 7, 319.
15. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
16. Yang, J.; Wang, X.; Zhang, G.; Ma, A.; Chen, W.; Shao, L.; Shen, C.; Xie, K., High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation. Front Chem 2019, 7, 388.
17. Ye, L.; Feng, Z., 14 - Polymer electrolytes as solid solvents and their applications. In Polymer Electrolytes, Sequeira, C.; Santos, D., Eds. Woodhead Publishing: 2010; pp 550-582.
18. Armand, M.; Gorecki, W.; Andreani, R.; Scrosati, B., Second International Meeting on Polymer Electrolytes. 1990.
19. Petersen, G.; Jacobsson, P.; Torell, L. M., A Raman study of ion—polymer and ion—ion interactions in low molecular weight polyether—LiCF3SO3 complexes. Electrochimica Acta 1992, 37 (9), 1495-1497.
20. Han, S.; Liu, Y.; Zhang, H.; Fan, C.; Fan, W.; Yu, L.; Du, X., Succinonitrile as a high‐voltage additive in the electrolyte of LiNi0.5Co0.2Mn0.3O2/graphite full batteries. Surface and Interface Analysis 2019, 52 (6), 364-373.
21. Kim, G.-Y.; Dahn, J. R., The Effect of Some Nitriles as Electrolyte Additives in Li-Ion Batteries. Journal of The Electrochemical Society 2015, 162 (3), A437-A447.
22. Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L., Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A 2016, 4 (26), 10070-10083.
23. Peramunage, D.; Pasquariello, D. M.; Abraham, K. M., Polyacrylonitrile‐Based Electrolytes with Ternary Solvent Mixtures as Plasticizers. Journal of The Electrochemical Society 1995, 142 (6), 1789-1798.
24. Perera, K. S.; Dissanayake, M. A. K. L.; Skaarup, S.; West, K., Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries. Journal of Solid State Electrochemistry 2007, 12 (7-8), 873-877.
25. Choe, H. S.; Carroll, B. G.; Pasquariello, D. M.; Abraham, K. M., Characterization of Some Polyacrylonitrile-Based Electrolytes. Chemistry of Materials 1997, 9 (1), 369-379.
26. Huang, B.; Wang, Z.; Li, G.; Huang, H.; Xue, R.; Chen, L.; Wang, F., Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 1996, 85 (1), 79-84.
27. Lee, K.-H.; Park, J.-K.; Kim, W.-J., Electrochemical characteristics of PAN ionomer based polymer electrolytes. Electrochimica Acta 2000, 45 (8), 1301-1306.
28. Chen, B.; Huang, Z.; Chen, X.; Zhao, Y.; Xu, Q.; Long, P.; Chen, S.; Xu, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochimica Acta 2016, 210, 905-914.
29. Zhao, Y.; Huang, Z.; Chen, S.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y.; Xu, X., A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016, 295, 65-71.
30. Zhuang, H.; Ma, W.; Xie, J.; Liu, X.; Li, B.; Jiang, Y.; Huang, S.; Chen, Z.; Zhao, B., Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries. Journal of Alloys and Compounds 2021, 860, 157915.
31. Capuano, F.; Croce, F.; Scrosati, B., Composite Polymer Electrolytes. Journal of The Electrochemical Society 1991, 138 (7), 1918-1922.
32. Appetecchi, G. B.; Scaccia, S.; Passerini, S., Investigation on the Stability of the Lithium-Polymer Electrolyte Interface. Journal of The Electrochemical Society 2000, 147 (12), 4448.
33. Bronstein, L. M.; Karlinsey, R. L.; Ritter, K.; Joo, C. G.; Stein, B.; Zwanziger, J. W., Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry 2004, 14 (12), 1812-1820.
34. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394 (6692), 456-458.
35. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
36. Asif, A.; Huang, C.; Shi, W., Structure–property study of waterborne, polyurethane acrylate dispersions based on hyperbranched aliphatic polyester for UV-curable coatings. Colloid and Polymer Science 2004, 283 (2), 200-208.
37. Low, S. P.; Ahmad, A.; Rahman, M. Y. A., Effect of ethylene carbonate plasticizer and TiO2 nanoparticles on 49% poly(methyl methacrylate) grafted natural rubber-based polymer electrolyte. Ionics 2010, 16 (9), 821-826.
38. Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W. J.; Arof, A. K., TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS. Electrochimica Acta 2015, 175, 68-73.
39. Y. K. Chong, T. P. T. L., Graeme Moad, Ezio Rizzardo, and San H. Thang, A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process. American Chemical Society 1999, 32, 2071-2074.
40. John Chiefari, Y. K. B. C., Frances Ercole, Julia Krstina, Justine Jeffery, Tam P. T. Le, Roshan T. A. Mayadunne, Gordon F. Meijs, Catherine L. Moad, Graeme Moad, Ezio Rizzardo, and San H. Thang, Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. American Chemical Society 1998, 31, 5559-5562.
41. Kusuma, R. I.; Lin, C.-T.; Chern, C.-S., Kinetics of reversible addition-fragmentation transfer (RAFT) miniemulsion polymerization of styrene using dibenzyl trithiocarbonate as RAFT reagent and costabilizer. Polymer International 2015, 64 (10), 1389-1398.
42. Jian-Jun Yuan, R. M., Qing Gao, Yi-Feng Wang, Shi-Yuan Cheng, Lin-Xian Feng, Zhi-Qiang Fan, Lei Jiang, Synthesis and Characterization of Polystyrene/Poly(4vinylpyridine) Triblock Copolymers by Reversible Addition–Fragmentation Chain Transfer Polymerization and Their Self-Assembled Aggregates in Water. Journal of Applied Polymer Science 2003, 89, 1017-1025.
43. Huang, Z.-H.; Tsai, D.-S.; Chiu, C.-J.; Pham, Q.-T.; Chern, C.-S., A lithium solid electrolyte of acrylonitrile copolymer with thiocarbonate moiety and its potential battery application. Electrochimica Acta 2021, 365, 137357.
44. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.
45. 邱俊榮. 丙烯腈寡聚物膜作為固態鋰電池電解質之合成及量測. 國立臺灣科技大學, 台北市, 2020.
46. Rani, M.; Rudhziah, S.; Ahmad, A.; Mohamed, N., Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber. Polymers 2014, 6 (9), 2371-2385.
47. Kufian, M. Z.; Majid, S. R., Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive. Ionics 2009, 16 (5), 409-416.
48. He, C.; Liu, J.; Li, J.; Zhu, F.; Zhao, H., Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries. Journal of Membrane Science 2018, 560, 30-37.
49. Zhou, D.; He, Y.-B.; Liu, R.; Liu, M.; Du, H.; Li, B.; Cai, Q.; Yang, Q.-H.; Kang, F., In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries. Advanced Energy Materials 2015, 5 (15), 1500353.
50. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta 2011, 56 (11), 3926-3933.
51. Buriez, O.; Han, Y. B.; Hou, J.; Kerr, J. B.; Qiao, J.; Sloop, S. E.; Tian, M.; Wang, S., Performance limitations of polymer electrolytes based on ethylene oxide polymers. Journal of Power Sources 2000, 89 (2), 149-155.
52. Hiller, M. M.; Joost, M.; Gores, H. J.; Passerini, S.; Wiemhöfer, H. D., The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochimica Acta 2013, 114, 21-29.
53. Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Liu, W.; Tang, X., Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers. New Journal of Chemistry 2011, 35 (3), 614-621.

QR CODE