簡易檢索 / 詳目顯示

研究生: 林昆民
kuang-ming Lin
論文名稱: 銲條合金成分對AA7005鋁合金擠型材銲後熱處理製程之影響
Effects of Filler Chemical Composition on the Postweld Heat Treatability of Extruded AA7005 Aluminum Alloy
指導教授: 吳翼貽
Ye-ee Wu
口試委員: 顧鈞豪
none
蔡顯榮
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 135
中文關鍵詞: RRAT73T6銲後熱處理AA7005鋁合金
外文關鍵詞: AA7005 Aluminum Alloy, RRA, T73, T6, Postweld Heat Treatability
相關次數: 點閱:249下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的係尋求適用於AA7005鋁合金之最佳銲後熱處理製程,並探討銲條類型對銲後熱處理製程之影響。將AA7005-T1母材應用ER5356、ER5183及ER5556等高鎂含量銲條銲接,再施以自然時效、T6、T73及RRA等熱處理製程,從金相組織、微硬度試驗、拉伸試驗、EPMA、SEM、TEM、DSC與應力腐蝕測試等方面,探討不同銲條與銲後熱處理製程之組合對銲件之微觀結構及機械性質的影響,期能找出具有高抗拉強度與高抗應力腐蝕能力之銲後熱處理製程。
實驗結果顯示,經三種銲條銲接所得之工件在銲道與熱影響區界面間均會形成擴散障礙層,ER5356銲接所得工件其擴散層較ER5183及ER5556所得銲件要來得寬廣。ER5356所得銲件經固溶處理後,此擴散障礙層已不存在。惟ER5183及ER5556所得之銲件雖經固溶及時效熱處理,此擴散障礙層變寬(從0.25mm到0.5mm),但無法消除,阻擋銲道與母材間鋅、鎂二元素的相互擴散機制,以致在銲道無法形成強化相η’(MgZn2 )發揮析出強化的功能。導致此種差異之可能原因為ER5183與ER5556所銲之銲道在銲接過程中或固溶熱處理時,其高錳鎂含量易與鋁基材析出Mg2Al3、MnAl6及(MgMn)3Al10等非強化相,造成銲件整體之抗拉強度無法提昇。為探討熱處理製程對AA7005銲件機械性質之影響,AA7005鋁擠材應用三種銲條所得銲件進行熱處理後,惟ER5356所銲之工件能提昇銲件整體強度,其中以 RRA製程最能提昇銲件整體強度,而T73製程能使銲道強度高於母材強度。故應選擇T73製程作為最佳銲後熱處理製程。


Proper fillers selection and postweld heat-treatment can strongly affect the mechanical and stress corrosion cracking (SCC) properties of the weldments of 7000 series aluminum alloy. ER5183, ER5356 and ER5556 having similar chemical compositions are the three fillers commonly used for AA7005 welding process. The objective of this study is to investigate the influence of alloying elements on the postweld heat-treatment process and to select suitable postweld heat-treatment processes for AA7005 aluminum alloy.
Postweld heat-treatment processes, such as nature aging, T6 temper, T73 temper and RRA treatment, will be performed. Optical metallographic, micro-hardness test, tensile test, EPMA, SEM, TEM, DSC and SCC test will be conducted to characterize the mechanical and stress corrosion properties of these heat-heated weldments.
Experimental results showed that diffusion barriers are presented between the weld metal and HAZ fell on ER5556, ER5183 and ER5556 weldments. The diffusion barrier fell away after solution treatment on ER5356 weldments ,but the same situation did not happened on ER5183 and ER5556 weldments; because this barrier, Zn and Mg could not diffuse between the weld metal and HAZ ,in which the precipitates η’(MgZn2 )which are not extremely fine and distributed inside the grains on the weld metal , and the high content of Mg and Mn which are caused to form Mg2Al3,MnAl6 and(MgMn)3Al10 on the welding process or solution treatment on weld metal; these precipitates cause large particles barriers to the mechanical properties on ER5183 and ER5556 weldments. The strength of AA7005 weldments with ER5356 filler may largely increases after RRA heat-treatment. It can be concluded that T73 heat treatment is the most suitable postweld heat-treatment process for AA7005 aluminum alloy comparing with the other treatment processes.

中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖索引 Ⅶ 表索引 Ⅹ 第一章 前言 1 1.1導論 1 1.2 研究方法 2 1.3 研究項目 3 第二章 文獻探討 5  2.1 鋁合金簡介 5 2.2 鋁合金時效析出強化機構 7 2.2.1鋁合金析出硬化之基本原理 7 2.2.2 7000系鋁合金之析出強化機制 8 2.2.3析出強化熱處理程序 10 2.3 RRA熱處理 14 2.4鋁合金之應力腐蝕性質 17 2.5鋁合金之導電度 19 2.6鋁合金惰氣鎢極電弧銲(GTAW)原理 20 2.6.1 GTAW銲接電流特性 20 2.6.2氬銲(GTAW,TIG)之優點 23 2.7鋁合金銲接特性 25 2.7.1非熱處理型鋁合金銲後強化機構 28 2.7.2 鋁合金銲後之微觀組織 29 2.7.3 鋁合金與銲條合金成分之影響 31 2.7.4 鋁合金銲前煉度 32 2.7.5 鋁合金銲後熱處理 32 第三章 實驗方法 34  3.1 實驗材料 34  3.2 實驗流程 35 3.3 熱處理流程 37 3.4 銲接設備 38 3.5 銲接程序 39 3.6 銲後熱處理 41 3.7 金相顯微組織觀察 42 3.8硬度測試 42 3.8.1 洛氏硬度試驗 42 3.8.2 微硬度實驗 42 3.9 拉伸試驗 44 3.10 掃瞄式電子顯微鏡(SEM)破斷面觀察 45 3.11 電子微探分析儀(EPMA)觀察 46 3.12穿透式電子顯微鏡(TEM)觀察 46 3.13熱分析儀(DSC)觀察 47 3.14 導電度量測 48 3.15 應力腐蝕測試 49 3.15.1 析出熱處理製程之抗應力腐蝕測試 49 3.15.2 銲後熱處理製程之抗應力腐蝕測試 50 第四章 實驗結果與討論 52 4.1 RRA熱處理 53 4.1.1硬度量測 53 4.1.2導電度量測 57 4.1.3 RRA熱處理之應力腐蝕試驗 58 4.1.4 Zn、Mg、Cu含量對RRA熱處理時間之影響 61 4.1.5 RRA熱處理製程對微觀組織的影響 63 4.2銲後熱處理製程 68 4.2.1金相組織分析 68 4.2.2不同成分銲條及不同銲後熱處理製程對銲件硬度之影響 85 4.2.3 電子微探分析儀觀察 95 4.2.4穿透式電子顯微鏡觀察 100 4.2.5 DSC熱分析儀觀察 103 4.2.6拉伸試驗 109 4.2.7 SEM電子顯微鏡觀察 113 4.2.8應力腐蝕測試 124 第五章 結論及建議 128 參考文獻 130 作著簡介 135

1. M.O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys”, Metallurgical Transaction A, Vol. 6A, pp.631-642, (1975).
2. M. Talianker, B. Cina, “Retrogression and Reaging and the Role of Disslocations in the Stress Corrosion of 7000-Ttype Aluminum Alloys”, Metallurgical Transactions A, Vol. 20A, pp. 2087-2092,(1989).
3. R. S. Kaneko, “RRA: Solution for Stress Corrosion Problems with T6 Temper Aluminum”, Metal Progress, Vol. 118, pp.41-43,( 1980).
4. M .B. Hall and J. W. Martin, “Effect of retrogression temperature on the properties of an RRA (retrogressed and re-aged) 7150 aluminum alloy”, Zeitschrift fuer Metallkunde, vol. 85, n 2, pp. 134-139, (1994).
5. N.C. Danh, K. Rajan, and W. Wallace, “A TEM Study of Microstructural Changes during Retrogression and Reageing in 7075 Aluminum”, Metall. Trans. A, vol. 14A, pp.1843-1850, (1983).
6. W. Wallace, J. C. Beddoes, M. C. deMalherbe, “A New Approach to the Problem of Stress Corrosion Cracking in 7075-T6 Aluminum”, Aero. And Space J., vol.27, pp.222~232, (1981).
7. R. T. Holt, V. R. Parameswaran and W. Wallace, “RRA Treatment of 7075- T6 Aluminum Components”, Canadian Aeronautics and Space Journal, vol. 42, n2, Jun, pp 83-87, (1996).
8. 徐煌仁,“ AA7005鋁合金擠型材熱處理製程之研究”,碩士論文,台灣科技大學機械所,民國90年。
9. 黃清添,“析出製程參數對AA7005鋁擠型合金機械性質與抗應力腐蝕性之影響”,碩士論文,台灣科技大學機械所,民國91年。
10. T. Ma and G. den Ouden, “Softening behaviour of Al-Zn-Mg alloys due to welding”, Materials Science and Engineering, A266, pp.198-204(1999).
11. Arnt O. Kluken and Borge Bjorneklett, “A study of Mechanical Properties for Aluminum GMA Weldments”, Welding Journal, pp. 39-44(1997).
12. 陳志毅,周長彬,“析出硬化型鋁合金2219與7003銲接之機械性質研究”,銲接論文發表會,台北市,第B17-B21頁,民國86年。
13. 高全盛,“ AA7005鋁合金銲後熱處理之研究”,碩士論文,台灣科技大學機械所,民國91年。
14. D. Altenpohl, “ Aluminium”, Vol.37, pp.401-411,(1961).
15. Donald R. Askeland, “The Science and Engineering of Materials”, PWS Publishing Company, p. 335, pp.367-370(1994).
16. W.F. Smith and N.J. Grant, “The Effect of Multiple-Step Aging on the Strength Properties and Precipitate-Free Zone Widths in Al-Zn-Mg Alloys”, Met.Trans, pp.979-983,(1970).
17. K. Hirano, “R.P. Agarwala and M.Cohen”, ActaMetallurgica,Vol.10, pp.857-863, (1962).
18. J. J. Thompson, E. S. Tankins and V. S. Agarwala, “ A Heat Treatment for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7xxx Aluminum Alloys”, Materials Performance, Vol. 26,, pp. 45-52,( 1987).
19. V. Hansen, L.k. Berg, M. Knutson-Wedel, K. Stiller, “Energy filter electron diffraction and aton probe investigation of artificial ageing in an Al-Zn-Mg alloy”, in: H.A.C. Benavides, M.J. Yacaman (Eds.), Proceedings of Electron Microscopy 1998, ICEM14, Cancun, Mexico, pp. 161–162, (1998).
20. L.K. Berg, J. Gjonnes, “GP-Zones in Al-Zn-Mg Alloys and Their Role in Artificial Aging”, Acta mater., Vol. 49,pp.3443-3451 (2001).
21. K. Stiller, P.J. Warren, ,“ Investigation of precipitation in an Al-Zn-Mg Alloys after two-step ageing treatment at 100° and 150℃”, Materials Science and Engineering A, Vol. A270, pp.55-63(2000).
22. L. F. Mondolfo, “Aluminum Alloys” : Structure and Properties PART4”, Butter Worths, pp.844-848(1976).
23. T. Engdahl, V. Hansen, P. J. Warren and K. Stiller, “Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments”, Materials Science & Engineering A, pp.59-64(2002).
24. W. H. Hunt, Jr. and J. T. Staley, “Light-Weight Alloys for Aerospace Application”, Warrendale, PA, TMS, pp.111-120(1989)
25. J. Robinson and P. Flynn, “Effects of Thermal Treatments on the Stress Corrosion Cracking Resistance of Forgings of the Aluminum Alloy 7010”, Key Engineering Materials, Vol. 99-100, pp.143-150(1995).
26. 柯漢光,“7075鋁合金厚板材料RRA熱處理之研究”, 碩士論文, 淡江大學機械工程研究所, (1986).
27. Ohnishi and Shiota, “Heat Treatment To Reduce The Susceptibility Al-Zn-Mg-Cu Alloy to Stress Corrosion Cracking”, 輕金屬, Vol.36, no.10, pp.647-656(1986).
28. M. U. Islam and W. Wallace, “Retrogression and reaging response of 7475 aluminum alloy”, Met. Technol., vol. 10, pp.386-392(1983).
29. J.K. Park and A.J. Ardell, “Microstructures of the Commercial 7075 Al Alloys in the T651 and T7 Tempers”, Metallurgical Transaction A, vol. 14A, , pp.1957-1965(1983).
30. B. F. Brown, “Stress Corrosion Cracking of High Strength Steels, The Theory of Stress Corrosion Cracking in Alloys”, edited by Dr. J. C. Scully, NATO, Brusels, pp.235-356(1971).
31. T. D. Burleigh, “The Postulated Mechanism for Stress Corrosion Cracking of Aluminum Alloys”, Corrosion, vol. 47, 1991, pp.89-98.
32. 余坤城, “渦電流檢測法訓練教材(初級) ”,中華民國非破壞檢測協會,pp.12-13.
33. 王宜達,“ 7005鋁擠型與5083鋁合金銲接件機械性質研究”,碩士論文,台灣科技大學機械所,民國89年。
34. William H. Cubberly, ASM Handbook, American Society for Metal, Vol. 6, pp. 528-536,722-739(1993).
35. 王振欽,“銲接學,第17-1~17-6與25-1~25-11頁,登文書局,民國74年。
36. L. W. Eastwood,“Gases in Non-Ferrous Metals and Alloys,”American Society for Metals(1953).
37. 姜志華、蔡金峰,“銲接冶金概論”,第68-71頁,徐氏基金會,民國76年。
38. The American welding society,“Aluminium welding seminar technical papers”pp.2-1 -2-5
39. S. R. Yeomans, “Mechanical Property Variations Across Welded Joints in Aluminium Alloy 5083 and the Effects of Postweld Cold Working Research Report No. R-37, ”The University of New South Wales, pp. 1-21 (1988).
40. Sindo Kou, “Welding Metallurgy”, John Wiley & Sons, NY, p. 207,pp.277-295(1987).
41. Federico M. Mazzolani, “Aluminum and Aluminum Structure”, 2nd ed, pp7-8. (1987).
42. A. Ya. Ishchenko and V. O. Chapor, “Weldability of High-Strength Alloys of Al-Zn-Mg-(Cu) System (Review)”, The Paton Welding Journal, No. 4, pp. 5-10(2000).
43. William R. Oates, “ Welding Handbook, American Welding Society”, Vol. 3, pp 26,30-41(1987).
44. American Welding Society Committee, “ Structural Welding Code-Aluminum”, American Welding Society, pp.115-128(1997).
45. ASTM Standards B557-94, Standard Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium- Alloy Products, pp. 411-423(1994).
46. ASTM Standards G39-90, Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens, pp. 138-144(1994).
47. ASTM Standards G103-89, Standard Test Method for Performing a Stress-Corrosion Test of Low Copper Containing Al-Zn-Mg Alloys in Boiling 6% Sodium Chloride Solution, pp. 407-410(1994).
48. Wei Wen, “ The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys”,Materials Science and Engineering ,A 392 pp. 136–144(2005)
49. F.King,“Aluminum and its alloys”, pp.107-109(1987)
50. N.Nishi,“The mechanical properties of Al-Ni-Mg and Al-Mn-Mg die casting alloys”The Minerals Metals &Materials society, pp.107-109(1988)
51. P.RATCHEV, “ Effect of preheat temperature on the orientation relationship of (Mn,Fe)Al6 precipitates in an AA 5182 aluminium-magnesium alloy”acta metal.mater.vol.43.no.9 p.p621-629.(1995)
52. Lucio F.Mondolfo, “ Metallography of Aluminum Alloys”,pp.100
53. 黃仁佑,“鋁合金銲接熱影響區之特性研究”,國立交通大學,博士論文,民國86年
54. S.NEBTI〝Calorimetric study of pre-precipitation and precipitation in Al-Mg alloy〞acta metal.mater.vol.43.no.9 p.p3583-3588.1995
55. Tanguy D, Bayle B,Magnin T,“ Hydrogen effects on Gb fracture during SCC in Al-Mg: critical experiments and atomistic computer simulations ”,International Conference on Hydrogen Effects on Materials Behavior and Corrosion Deformation Interactions; Moran,. pp. 873-882. (2003)
56. Searles J.L., “ Stress Corrosion Cracking of Sensitized AA5083 (Al-4.5Mg-1.0Mn) ”, Metallurgical and Materials Transactions A, vol. 32, no. 11, pp. 2859-2867, (2001)

QR CODE