簡易檢索 / 詳目顯示

研究生: 廖凱民
Kai-Min Liao
論文名稱: 分子動力學模擬不同冷卻速率之Au50Ag50合金的結晶行為與切削性
A Study on Crystalline Behaviors and Machinability of Au50Ag50 Alloy for Various Cooling Rates by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 黃佑民
Yu-Min Huang
雷添壽
Tien-Shou Lei
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 131
中文關鍵詞: 分子動力學結晶度切削性
外文關鍵詞: Crystalline Behaviors
相關次數: 點閱:197下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文使用分子動力學模擬金/銀合金塊材,利用不同的冷卻速率為參數條件,探討固化時材料微結構之變化,並以相同的冷卻條件搭配切削模擬實驗,探討切削後結晶度、切削力與剪切面上之剪切角ψ之變化。原子間採用嵌入原子式(Embedded Atom Method) 勢能、Tight-binding勢能與Morse勢能函數模型。
模擬的結果顯示,越快冷卻速率凝固後塊材內的結晶度越低;反之,越慢冷卻速率凝固後塊材內的結晶度越高。在室溫增加鬆弛時間未能有效的提高材料結晶度,若要得到高結晶度,應使用較慢的降溫速率,或是使用適當的晶種。切削時因刀具給予材料系統的機械功可以誘發結晶,使加工表面的結晶度提升。隨著材料的結晶度提高,切削力也隨即上升與reverse Hall-Petch effect相符。相較於單晶銀(001)晶面[1 ‾00]方向的切削加工,成分比例1:1金/銀合金塊材切削力較大,且會隨著結晶度提升而增加。因為單晶材料具有多個滑動性統,因此,切削時剪切角變動幅度較結晶材料大。


The research studies the nanometric cutting of Au50Ag50 alloy bulk with the diamond tool by molecular dynamics. Using different cooling rates as a parameter conditions to explore the curing material microstructure changes. And using the same cooling conditions with cutting simulation experiments to explore the degree of crystallinity after cutting and cutting force and the shear angle on the shear plane. The interactions between atoms in the workpiece are described by a embedded-atom method(EAM) and Tight-binding(TB) and Morse potential.
The simulation results shows that when the faster the cooling rate after solidification within the bulk lower crystallinity; contrary, the slower cooling rate after solidification within the bulk higher crystallinity. Increase the relaxation time at room temperature can not effectively improve the crystalline material, to obtain a high degree of crystallinity, the slower the cooling rate should be used, or the use of appropriate crystal seed. Cutting tool to give material systems due to mechanical work can induce crystallization, the machined surface to enhance the degree of crystallinity. With the increased degree of crystallinity of the material, the cutting force also went up with the reverse Hall-Petch effect consistent. Compared to the single crystal of silver (001) [1 ‾00] cutting direction, the component ratio of 1:1 gold / silver alloy bulk cutting force and will improve as the crystallinity increases. Because the single crystal material has a plurality of sliding systems, therefore, change the cutting angle of shear rate of more large crystalline material.

摘要 I Abstract II 目錄 III 表索引 V 圖索引 VI 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 2 第二章 分子動力學基礎理論 6 2.1 分子動力學的基本假設 6 2.2 分子間作用力與勢能函數 6 2.3 運動方程式與演算法 11 2.4 Verlet表列法 14 2.5 週期性邊界 14 2.6 最小映像法則 15 2.7 無因次化 16 2.8 Centrosymmetry參數 16 2.9 Radial Distribution Function徑向分佈函數 18 第三章 模擬步驟與模型建立 30 3.1 模擬步驟 30 3.2 初始設定 30 3.2.1 系統平衡 32 3.2.2 動態模擬 33 第四章 結果與討論 40 4.1 Morse勢能函數之參數對切削的影響 40 4.2 單晶銀與單晶金(001)晶面[100]方向切削行為分析 52 4.3 金/銀合金塊材之製程程序與結晶度之探討 62 4.3.1 金/銀合金塊材製程程序 62 4.3.2 冷卻速率對材料結晶度之影響 69 4.3.3 鬆弛時間對材料結晶度之影響 80 4.4 金/銀合金塊材在不同冷卻速率下之切削行為分析 91 4.4.1 金/銀合金塊材冷卻速率6×1013K/s之切削行為 91 4.4.2 金/銀合金塊材冷卻速率6×1012K/s之切削行為 99 4.4.3 金/銀合金塊材冷卻速率2.4×1012K/s之切削行為 104 4.4.4 金/銀合金塊材冷卻速率1.2×1012K/s之切削行為 110 4.4.5 冷卻速率對金/銀合金塊材切削行為之影響 117 4.5 材料尺寸效應之分析 121 4.6 臨界切削厚度之分析 124 第五章 結論與建議 129 5.1 結論 129 5.2 未來研究方向與建議 130 參考文獻 132

1. 約翰.道爾頓(Dalton, John),李家玉,盛根玉譯,化學哲學新體系(A new system of chemical philosophy),北京市,北京大學出版社,2006。
2. N. Metropolis, ArianNa W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., Vol.21, No. 6, pp. 1087-1092 (1953).
3. J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics,” J. Chem. Phys., Vol. 18, No. 6, pp. 817-829 (1950).
4. L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, ” Phys. Rev., Vol. 159, No. 1, pp. 98-103 (1967).
5. B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
6. D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. phys. Rep., Vol. 9, pp. 1-53 (1988).
7. M. Meyer and V. Pontikis, Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications, Kluwer Academic Publishers, USA, (1991)
8. N. Ikawa, S. Shimada, H. Tanaka and G. Ohmori, “An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning,” Ann. CIRP, Vol.40,No.1,
551 (1991).
9. Shimada et al, “Structure of Micromachined Surface Simulated by
Molecular Dynamics Analysis,” Ann. CIRP, Vol. 43, No. 9, 51 (1994).
10. S. Shimada, N. Ikawa, G. Ohmori, H. Tanaka and J. Uchikoshi, “Molecular Dynamics Analysis as Compared with Experimental
Results of micromachining, “ Ann. CIRP, Vol. 41, No. 1, 117 (1992).
11. S. Shimada et al, “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation,” Ann. CIRP,
Vol. 42, No. 191 (1993).
12. Shimada et al, “Molecular Dynamics Analysis of Cutting Force and Chip Formation Process in Microcutting”, J.JSPE,Vol.59,No.12,
pp. 51-51 (1993).
13. T. Inamura, H. Suzuki and N. Takezawa, “Cutting experiments in a computer using atomic models of a copper crystal and a diamond
tool”, Int. J.Japan.Soc.Prec., Eng., Vol. 25, pp. 259-266 (1991).
14. T. Inamura,N. Takezawa and N. Taniguchi, “Atomic-scale cutting in a computer using crystal models of copper and diamond”, Ann. CIRP,
Vol. 41, pp. 121-124 (1992).
15. T. Inamura, N. Takezawa and Y. Kumaki, “ Mechanics and energy dissipation in nanoscale cutting”, Ann. CIRP, Vol. 42, pp. 79-82 (1993).
16. T. Inamura, N. Takezawa,Y. Kumaki and T. Sata, “ On a possible mechanism of shear deformation in nanoscale cutting”, Ann. CIRP,
Vol. 43, pp. 47-50 (1994).
17. R. Komanduri, N. Chandrasekaran nad L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation
approach, ” Wear, Vol. 219, 84-97 (1998).
18. R. Komanduri, N. Chandrasekaran nad L. M. Raff, “Simulation of nanometric cutting of single crystal aluminum-effect of crystal
orientation and direction of cutting,” Wear, Vol. 242, pp. 60-68 (2000).
19. R. Komanduri, N. Chandrasekaran nad L. M. Raff, “Simulation of indentation and scratching of single crystal aluminum“, Wear,
Vol. 240, No. 1-2, pp. 113-143 (2000).
20. R. Komanduri, N. Chandrasekaran nad L. M. Raff, “Molecular dynamics simulation of atomic-scale friction”, Phys. Rev.B, Vol. 61,
pp. 14007-14019 (2000).
21. R. Komanduri, M. Lee, L. M. Raff, “The significance of normal rake in oblique machining”, International Journal of Machine Tools and
Manufacture, Vol. 44, No. 10, pp. 1115-1124 (2004).
22. K. Maekawa, and A.Itoh, “Friction and tool wear in nano-scale machining – A molecular dynamics approach”, Wear, Vol. 188,
155 (1995).
23. L. Wang, X. F. Bian, H. Li, “Structural characteristics of Ag3Au alloy melt and crystal growth by molecular dynamics simulation”, Materials Letters, Vol. 51, pp. 7-13 (2001).
24. Q. X. Pei, C. Lu, F. Z. Fang, H. Wu, “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science, Vol.37, No. 4, pp. 434-441 (2006).
25. Q. X. Pei, C. Lu, H. P. Lee, “ Large scale molecular dynamics study of nanometric machining of copper”, Computational Materials
Science, Vol.41, pp. 177–185 (2007).
26. M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications,” Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
27. J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature,” Proceedings of the Royal Society of Physical Character, London , Series A, Vol. 106, No. 738, pp. 441-462 (1924).
28. J. E. Lennard-Jones, “On the Determination of Molecular Fields.-II. From the Equation of State of a Gas ,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 106, No. 738, pp. 463-477 (1924).
29. P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,” Phtsical Review, Vol. 34, pp. 57-64 (1929).
30. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, No.3, pp. 687-690 (1959).
31. M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phys. Rev. Lett., Vol. 50, No.17, pp. 1285-1288 (1983).
32. M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defectsin in Metals,” Phys. Rev. B, Vol. 29, No.12, pp. 6443-6453 (1984).
33. M. S. Daw, “Model of Metallic Cohesion:The Embedded-Atom Method,” Physical Review B, Vol. 39, No.11, pp. 7441-7452 (1989).
34. R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Physical Review B, Vol. 37, No.8, pp. 3924-3931 (1988).
35. R. A. Johnson, “Alloy Models with The Embedded-Atom Method,” Physical Review B, Vol. 39, No.17, pp. 12554-12559 (1989).
36. R. A. Johnson, and D. J. Oh, “Analytic Embedded-Atom Method Model for BCC Metal,” Journal of Materials Research Sociery, Vol. 4, No.5, pp. 1195-1201(1989).
37. Y. Mishin, and D. Farkas, “Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations,” Physical Review B, Vol. 59, No.5, pp. 3393-3407 (1999).
38. M. W. Finnis, and J. E. Sinclair, “A Simple Empirical N-Body Potentials for Transition Metals,” Philosophical Magazine A, Vol. 50, pp. 45-55 (1984).
39. C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Englewood Cliffs, NJ, (1971).
40. J. M. Haile, Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication) , John Wiley & Sons, Inc, USA, (1992).
41. J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics,” J. Mater. Process. Technol., Vol.59, pp. 309-314 (1996).
42. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Physical. Review B, Vol.58, No. 17, pp. 11085-11088 (1998).
43. 彭達仁., "分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析", 國立台灣科技大學博士論文, (2008).
44. J. M. Haile, “Molecular Dynamics Simulation,” A Wiley-Interscience Publication, pp.263 (1992)
45. S. J. Chen, H. L. Huang, “Diffusion Activation Energies in Face-Centered Cubic Metals Using the Morse Potential Function,” Journal of Physics, VOL. 19, No. 4, pp. 106-112 (1951)
46. ASM Handbook Volume 03:Alloy Phase Diagrams
47. P. G. Debenedetti, F. H. Stillinger, “Supercooled liquid and the glass transition, ” Nature, (2001).
48. 黃再利, “分子動力學模擬奈米銅線結晶型態及機械行為研究,”國立台灣科技大學碩士論文(2009)
49. J. Schiotz, F. D. Di Tolla, K. w. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Vol.391, pp. 561-563, (1998)
50. J. Schiotz, T. Vegge, F. D. Di Tolla, K. W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Vol. 60, pp. 11971-11983, (1999)

QR CODE