簡易檢索 / 詳目顯示

研究生: 趙子承
Tzu-Chen Chao
論文名稱: 利用離散時域技術製作主動式之微波積分器
Design of Active Microwave Integrator Using Discrete Time Techniques
指導教授: 徐敬文
Chien-Wen Hsue
口試委員: 陳國龍
Kuo-Lung Chen
張勝良
Sheng-Lyang Jang
黃進芳
Jin-Fang Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 79
中文關鍵詞: 積分器離散時域
外文關鍵詞: integrator, discrete time domain
相關次數: 點閱:221下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統應用採用運算放大器(OPA)和R、C等離散元件實現積分器特性,但由於運算放大器元件的操作頻率受限,往往僅能於較低速的應用。
    本論文中,我們提出一個以離散時域技術及電晶體的離散時域模型設計具增益的微波積分器的新方法,並利用此方法實現兩個不同正規化頻率的積分器。
    此方法是利用離散時域的技術方法,將其電晶體之散射參數以Z多項式表示,再利用傳輸線鏈散矩陣和積分器系統轉移函數方程式作為系統程式的合成演算,找出微帶線的系統特徵阻抗並以串接多條單位電氣長度傳輸線於電晶體來實現具增益微波積分器,並以實驗結果來驗證此設計。


    The integrator is an instrument tool evaluating the time integral of measured signals and a serial R-C circuit, in conjunction with an operational amplifier, has been frequently applied to the design of integrators.
    So far, the integrators are primarily employed in circuit for low-speed applications. In the thesis, we propose a new method to implement the active integrators for high-frequency applications. The new method is applied to achieve the two kinds of integrators. In accordance with the practice of different normalized frequency, the integrators are eventually designed and fabricated.
    In this method, the transfer function of integrator in z domain is described at first. Based on the transfer function, the z domain chain-scattering matrices of transmission lines and the better equation are then derived to realize the essential characteristic impedance in the thesis. Experimental results are presented to illustrate the validity of this method.

    摘 要................................................I Abstract..............................................II 致 謝................................................III Contents..............................................IV List of Figures.......................................VI Chapter 1 Introduction...............................1 1.1 Motivation.......................................1 1.2 Proposal.........................................2 1.3 Outlines.........................................3 Chapter 2 Basic Theory...............................5 2.1 Discrete-Time Filter.............................5 2.2 Bilinear Transformation..........................7 2.3 Feedback Amplifiers..............................9 2.4 Microstrip Line..................................12 Chapter 3 Transfer Functions of Transmission Line and Cascaded Networks. 15 3.1 Chain-Scattering Parameters......................16 3.2 Fundamental Circuits and Their Chain-Scattering Parameters..........18 3.2.1 A Serial Transmission-Line Section.............19 3.2.2 An Open-Circuited Single-Section Stub..........23 3.2.3 A Short-Circuited Single-Section Stub..........25 3.2.4 An Open-Circuited Two-Section Stub.............27 3.3 Transfer Functions of Cascaded Networks..........30 3.4 Summary..........................................33 Chapter 4 Design Method of Active Microwave Integrators.................35 4.1 Designated Transfer Function of the Integrator in z-Domain..........35 4.2 Transistor Modeling of Transformation in z-Domain...................37 4.3 Design of Integrator through Serial Method..........................39 4.4 Summary..........................................41 Chapter 5 Implementation and Experimental Results....42 5.1 Modeling and Design of Transistor................43 5.2 An Integrator Normalizing to 10GHz...............51 5.3 An Integrator Normalizing to 15GHz...............57 Chapter 6 Conclusion.................................62 6.1 Conclusion.......................................62 6.2 Future Work......................................63 References............................................64

    [1] Kenyi Huang and Tsenchieh Chiu, "LTCC Wideband Filter Design with Selectivity Enhancement," IEEE Microwave and Wireless Components Letters, vol.19. No. 7., pp452-454, July 2009.
    [2] Greg Brzezina, Langis Roy and Leonard MacEachern, "Design Enhancement of
    Miniature Lumped-Element LTCC Bandpass Filters," IEEE Trans. Microwave Theory Tech. vol.57, No.4, pp815-823, April 2009.
    [3] Tao Yang, Ruimin Xu, Lan Xiao and Shuyi Wang, "An Improved SIR Filter Designed Using LTCC Technology," IEEE International Conference on Microwave and Millimeter Wave Tech., vol.2, pp587-590,April 2008.
    [4] Saad M.R., Ambak Z., Alias R., Ibrahim A., Shapee S.M., Yusoff, Yahya M.R.and Mat A., "Designing 5GHz Microstrip Coupled Line Bandpass Filter Using LTCC Technology," IEEE International Conference on Electronic Design, pp.1-4, Dec 2008.
    [5] Onkaraiah Santhosh and C.S. Tang, "Mitigating Heat Dissipation and thermal mechanical stress challenges in 3-D IC Using Thermal Through Silicon Via," IEEE Electronic Components and Technology Conference(ECTC), pp.411-416, June 2010,
    [6] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2ndEd.,Prentice Hall, Inc, 1999.
    [7] D. D. Cohen and R. A. Zakarevivius, “Operational amplifier integrators for the measurement of the delay times of microwave transistors,” IEEE J. Solid-State Circuits, vol. SC-10, no.1 , pp. 19-27, Feb. 1975
    [8] R. L. Geiger and G. Bailey, “Integrator design for high-frequency active filter applications,” IEEE, Trans. Circuit Syst., vol. CAS-29, no. 9, pp595-603, Sep.1982
    [9] D.-C. Chang, C.-W Hsue, “Wide-Band Equal-Ripple Filters in Nonuniform Transmission Lines,” IEEE Trans. Microwave Theory Tech., vol. 49, 2001.
    [10] D.-C. Chang, C.-W. Hsue, “Design and implementation of filters using transfer function in the Z domain,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 979-985, 2001.
    [11] Da-Chiang Chang and Ching-Wen Hsue, Discrete-Time Domain Techniques for the design of Microwave Filters, National Taiwan University of science and Technology, July,1998.
    [12] G. Gonzalez, Microwave Transistor Amplifier-Analysis and Design, 2nd Ed., Prentice Hall, Inc., 1984
    [13] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, Mass.
    [14] I. J Bahl and D. k. Trivedi, A Designer`s Guide to Microstrip Line, Microwave, 1977.
    [15] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Publishing Company, Inc., 1989.
    [16] David M. Pozar, Microwave Engineering, 2nd Ed., John Wiley & Sons, Inc., 1998
    [17] Jia-Shen G. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2001
    [18] J. Le Bihan, “Novel class of digital integrators and differentiators,” Electron. Lett., vol.28 ,no.15, pp. 1376-1378, 1992
    [19] M. A. Al-Alaoui, “A class of second-order integrators and low-pass differentiators,” IEEE Trans., Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 4, pp. 220-23, Apr., 1995
    [20] C.C. Tseng and S.L. Lee, "Design of digital IIR integrator using discrete Hartley transform interpolation method," IEEE International Symposium on Circuits and Systems,Taipei,Taiwan,pp. 2181-2184, May 2009.
    [21] Gupta, M. Jain, M. Kumar, B. “Wideband Digital Integrator” IEEE Multimedia, Signal Processing and Communication Technologies, IMPACT pp106-108, March 2009
    [22] N. Q. Ngo, “A new approach for the design of wideband digital integrator and differentiator,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 9, pp. 936-940, Sep. 2006.
    [23] C. –W. Hsue, L.-C. Tsai, and K.-L. Chen, “Implementation of first-order and second-order microwave differentiators,” IEEE Trans. Microw. Theory Tech., vol.52, no. 5, pp. 1443-1448 May 2004.
    [24] C. –W. Hsue, L. –C. Tsai, and Yi-Hsien Tsai, “Time-Constant Control of Microwave Integrators Using Transmission Lines,” IEEE Trans. Microwave Theory Tech. vol.54, pp. 1043-1047,March 2006.
    [25] D. Hanselman and B. Littlefield, Mastering MATLAB 5. Englewood Cliffs, NJ: Prentice Hall, 1998.
    [26] Sumitomo Electric Device Innovations, Inc.: http://www.sedi.co.jp/e/index.html
    [27] Behzad Razavi, RF MICROELECTRONICS, Prentice Hall, Inc., 1997
    [28] M. L. Edwards, J. H.Sinsky, “A new criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter”, December 1992, IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2303-2311.
    [29] Mini-Circuits,Inc.:http://www.minicircuits.com

    QR CODE