簡易檢索 / 詳目顯示

研究生: 林定言
Ting-yen Lin
論文名稱: 於白金及銅基電極上濺鍍製備非晶鈧酸鈥薄膜性質之研究
Preparation and characterizations of Sputtered Amorphous HoScO3 Film on Pt and Cu-based Electrodes
指導教授: 朱 瑾
Jinn Chu
口試委員: 段維新
Wei-hsing Tuan
郭東昊
Dong-hau Kuo
梁元彰
Yuan-chang Liang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 121
中文關鍵詞: 非晶鈧酸鈥
外文關鍵詞: amorphous, holmium scandium oxide
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要為利用射頻磁控濺鍍法製備氧化物薄膜(HoScO3,鈧酸鈥)於Pt/Ti/SiO2/Si,Cu(ReNx)/Ti/SiO2/Si及Cu(RuNx)/TaN/SiO2/Si不同基板上並且探討鈧酸鈥和白金電極及銅合金電極之間的介面顯微組織和電性行為。依據X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡及二次離子質譜儀的結果,顯示當退火溫度升高至773K時,鈧酸鈥和白金基板間並無顯著的結構反應。然而當退火溫度提升至873K,白金電極和鈧酸鈥介面有著微量的二氧化鈦產生。此外,鈧酸鈥薄膜在873 K退火後依舊維持非晶質結構的特性。
電性量測結果顯示,當退火溫度到達873K時,介電常數下降,推測由於二氧化鈦的生成所造成。漏電流機制由低電場至高電場依序為Schottky和Poole-Frankel。由導電式原子力顯微鏡量測結果顯示,隨著退火溫度的增加,漏電流越小,推測鈧酸鈥薄膜的非晶結構變得更為緻密因此阻擋了漏電流的產生。
此外,經過高溫退火後,以銅合金Cu(ReNx)和Cu(RuNx)為電極的試片其在鈧酸鈥和銅合金電極間產生了自銅合金電極以及緩衝層的薄膜剝落現象,因此鈧酸鈥薄膜將作進一步的改質(如更換緩衝層等措施)以便銅合金可作為其電極之用。


200-nm-thick HoScO3 films fabricated by magnetron sputtering on the Pt/Ti/SiO2/Si, Cu(ReNx)/Ti/SiO2/Si and Cu(RuN¬x)/TaN/SiO2/Si stack structures have been characterized. The effect of post-annealing on the microstructures and electrical properties are studied. X-ray results show the amorphous state in the film at various temperature up to 873 K. The SEM and SIMS results clearly show the interaction between HoScO3 film and Pt electrode after annealing at 873 K. Dielectric constant exhibits no dependence of electric field. It reaches to a maximum value of 51.3 after annealing at 773 K and has a noticeable drop to 27.3 as the annealing temperature reaches to 873 K. The decrease in dielectric constant is probably due to the TiO2 formation between HoScO3 film and Pt bottom electrode observed by TEM results. The leakage current mechanism is dominated by Poole-Frankel emission. In addition, the HoScO3 films deposited on the Cu(ReNx)/Ti/SiO2/Si and Cu(RuN¬x)/TaN/SiO2/Si stack structures have been investigated for the thermal stability of stack structures at various annealing temperatures. However, the results of the annealed samples are not obtainable since the films peel off from the bottom electrode [Cu(ReNx)] and buffer layer of TaN once the annealing temperature increases.

摘要 I Abstract II List of contents III List of tables V List of figures VI Chapter 1 Introduction 1 Chapter 2 Background 2 2.1 Scaling of very large scale integration (VLSI) circuits 2 2.2 Application of high dielectric constant films 5 2.3 Rare-earth (RE) scandate thin films 7 2.4 Metal-insulator-metal (MIM) System 9 2.5 Electrical properties 13 2.5.1 Polarization mechanisms 13 2.5.2 Dielectric constant and dielectric loss 18 2.5.3 Leakage current 21 2.6 Pt and Cu-baesd bottom electrodes 24 2.7 Effects on enhanced current flow (leakage current) through the 26 amorphous oxide 26 2.8 Sputtering 28 2.8.1 Principle of physical vapor deposition 28 2.8.2 Radio frequency (rf) sputtering 31 2.8.3 Magnetron sputtering 33 2.8.4 Sputtering of alloys 36 2.8.5 Nucleation and growth of sputter-deposited films 37 2.8.6 Thornton zone 40 Chapter 3 Experimental procedure 43 3.1 Substrate preparation 43 3.2 Film deposition 47 3.3 Post-annealing heat treatment and deposition of top electrode 49 3.4 Sample preparation of transmission electron microscope 52 3.5 Characterizations 55 3.5.1 Chemical analysis 55 3.5.2 Crystallography 55 3.5.3 Microstructure analysis 55 3.5.4 Electrical properties 56 Chapter 4 Results and discussion 57 4.1 Pt/HoScO3/Pt MIM system properties 57 4.1.1 Chemical composition 57 4.1.2 Crystallography 58 4.1.3 SEM analysis 62 4.1.5 TEM analysis 64 4.1.6 SIMS analysis 77 4.1.7 Dielectric constant properties 80 4.1.8 Leakage current 82 4.1.9 Conductive atomic force microscope (C-AFM) 87 4.2 HoScO3/Cu(ReNx) and HoScO3/Cu(RuNx) system 92 4.2.1 Resistivity of Cu(ReNx) and Cu(RuNx) 92 4.2.2 Crystallography 94 4.2.3 SEM and FIB analyses 100 Chapter 5 Conclusions 105 References 107

1. A. I. Kingon, Jon-Paul Maria and S. K. Streiffer, Nature, 406, p. 1032-1038 (2000).
2. J.F. Scott, C.A. Paz de Auraujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, J, Appl. Phys. Lett., 70, 382 (1991).
3. R. Waser, and M. Klee, Integ. Ferroelectrics 2, 23 (1992).
4. H. Kawano, K. Mori, and Y. Nakayama, J. Appl. Phys. 73, 5141 (1993).
5. F. Jona and G. Shirane, “Ferroelectric Crystals.” Dover, New York (1993).
6. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials.” Clarendon, Oxford (1977).
7. M. H. Francombe, “Ferroelectric Films for Integrated Electronics,” Physics of Thin Films, Vol. 17, p. 225. Academic Press, USA (1993).
8. Y. Xu, “Ferroelectric Materials and Their Applications.” Elsevier Science, Amsterdam (1991).
9. R. Ramesh, Ed., “Thin Film Ferroelectric Materials and Devices.” Kluwer Academic, Boston (1997).
10. J. F. Scott, “Ferroelectric Memories.” Springer-Verlag, Berlin (2000).
11. J. F. Scott, in “The Physics of Ferroelectric Ceramic Thin Films for Memory Applications” OPA (Overseas Publishers Association) (G. W. Taylor and A. S. Bhalla, Eds.), Ferroelectric Review, 1. p. 1 (1998).
12. C. Zhao, T. Witters, B. Brijs, H. Bender, O. Richard, and M. Caymax, T. Heeg, J. Schubert, V. V. Afanas’ev, A. Stesmans, and D. G. Schlom, Appl. Phys. Lett., 86 (13):p. 132903-3 (2005).
13. T. R., P. Ehrhart, M. Luyberg, M. Boese, R. Waser, M. Roeckerath, E. Rije, J. Schubert, S. Van Elshocht, and M. Caymax, Appl. Phy. Lett., 89(23): p. 232902-3 (2006).
14. P. Zurcher, P. Alluri, P. Chu, P. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz, and M. Miller, IDEM Tech. Dig. p. 153-156 (2000).
15. M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidnreich, G. Hueckel, O. Prigge and K. Stein, IDEM Tech. Dig., p. 157-160 (2000).
16. J. A. Babcock, S. G. Balster, A. Pinto, C. Dirmecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, IEEE Electron Device Lett., 22 p. 230-232 (2001).
17. SDRAM TECHNOLOGY, http://www.sdram-technology.info/sdram-cross-section.html.
18. S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, IEEE Electron Device Lett., 23, p. 185-187 (2002).
19. A. Kar-Roy, C. Hu, M. Racaneli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang, and A. Yin, Proc. IEEE Int. Interconnect Technology Conf., p. 245-247 (1999).
20. 邱碧秀,1996,電子陶瓷材料,科學圖書大庫,徐氏基金會,台北。
21. 向性一,A Study on the Ferroelectric Domain and Dielectric Properties of Barium Titanate Powders, 國立成功大學礦冶及材料科學研究所 博士論文,民國八十四年七月。
22. 林貞君,Syntheses and studies on Mg-doped R.F. magnetron sputtered Ba0.3Sr0.7TiO3 thin films, 國立台灣海洋大學材料工程研究所 碩士論文,民國九十二年六月。
23. Y. S. Cho, K. H. Yoon, “Dielectric ceramics”, Handbook of Advanced Electronic and Photonic Materials and Devices, 4, p.175 (2000).
24. Yokio Fukuda et al., Jpn. J. Appl. 37,L453 (1998).
25. S. Ezhivalavan, Tseung-Yuen Tseng, Materials Chemostry and Physics 65, p. 227 (2000).
26. Ching-Liang Dai, Fu-Yuan Xiao, Chi-Yuan Lee, Ying-Chou Cheng, Pei-Zen Chang, Shuo-Hung Chang, Materials Science and Engineering, A384, p.57-63 (2004)
27. H. Takasago, K. Adachi, and M. Takada, J. Electron. Mater. 12, p. 319 (1989).
28. J. Li, G. Vizekelethy, P. Revez, J. W. Mayer, and K. N. Tu, J. Appl. Phys. 69, p. 1020 (1991).
29. W. Fan, S. Saha, J. A. Carlisle, and O. Auciello, R, P. H. Chang, R. Ramesh, , Appl. Phys. Lett., 82 (9), (2003).
30. C. H. Wu, J. P. Chu, C.H. Lin, and S. F. Wang, Journal of The Electrochemical Society, 156 (12) G226~G229 (2009).
31. S. Kremmer, H. Wurmbauer, and C. Teichert, G. Tallarida, S. Spiga, C, Wiemer, and M. Fanciulli, J. Appl. Phys. 97, 074315 (2005).
32. Lehoczky SL. Phys Rev Lett 41,1814 (1978).
33. Lehoczky SL. J Appl Phys 49,5979 (1978).
34. K.K. Schuegraf, Noyes, Park Ridge, “Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, Equipment and Applications”, N.J. (1988).
35. J. A. Thornton, “Physical Vapor Deposition” in ”Semiconductor Materials and process Technologies”, G. E. McGuire, Ed., Noyes, Park Ridge, N.J. (1984).
36. 余東元, Characterizations of an ultrathin amorphous oxide diffusion barrier for Cu metallization on Si, 國立台灣科技大學材料科技研究所 碩士論文,民國九十八年七月。
37. Yuan-Chang Liang and Yuan-Ching Liang, Journal of The Electrochemical Society, 156 (7) G84-G87 (2009).
38. J. P. Chu, C. H. Lin, P. L. Sun and W. K. Leau, Journal of The Electrochemical Society, 156(7) H540-H543 (2009).
39. D. C. Larsen, “Thermal Expansion 7”, Plenum Press, New York p. 57-63 (1982).
40. Landolt-Bornstein Handbook, Springer-Verlag Seires, Vol. 16, New York, (1981).

無法下載圖示 全文公開日期 2015/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE