簡易檢索 / 詳目顯示

研究生: 林譽宸
Yu-Chen Lin
論文名稱: 製備鈣鈦礦鈷鈦和鎳鈦混合氧化物擔載PtRu觸媒及其氫氣氧化反應及醇類氧化反應探討
Preparation of Perovskite Co-Ti and Ni-Ti mixed oxides for supporting PtRu for Hydrogen oxidation reaction and Alcohol oxidation reaction
指導教授: 林昇佃
Shawn.D Lin
口試委員: 林修正
Andrew.S Lin
蔡孟哲
Meng-Che Tsai
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 148
中文關鍵詞: 鈣鈦礦氫氣氧化反應CO耐受性甲醇氧化反應乙醇氧化反應
外文關鍵詞: Perovskite, Hydrogen oxidation reaction, CO tolerance, Methanol oxidation reaction, Ethanol oxidation reaction
相關次數: 點閱:229下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討鈷鈦與鎳鈦鈣鈦礦混合氧化物載體製作PtRu觸媒,作為H2燃料電池陽極並分析其氫氣氧化活性與醇類氧化反應,金屬混合氧化物載體的導電性不如傳統碳黑載體,但其潛在優勢為穩定性較碳黑高。本目的為探討非探載體之鈣鈦礦混合氧化物載體陽極反應觸媒,提升觸媒比表面積、穩定性及CO耐受性,以實驗室先前共沉澱製備含鈦之鈷鎳鈣鈦礦混合金屬氧化物(CoTiO3-1000、NiTiO3-1000)為基礎,進一步測試製備參數對觸媒的影響,測試的參數包括:不同鍛燒溫度,不同鉑釕比例,了解觸媒中各成分可能扮演的角色,及其對電化學反應特性與抗CO毒化的影響。
研究結果顯示經Sol-gel處理之NiTiO3-600、CoTiO3-600載體具有高比表面積特性,擔載PtRu觸媒其PtRu合金粒徑約(3~5)奈米,CO-Stripping分析顯示CO氧化起始電位接近於20Pt10Ru/C-JM商用觸媒,氫氣氧化反應(HOR)在純H2、250 ppm CO/H2環境下的旋轉圓盤電極分析,發現NiTiO3-600擔載PtRu觸媒具有比擬商用觸媒20Pt10Ru-C-JM良好的抗CO能力、氫氣氧化活性與穩定性。在甲醇氧化反應中,自製觸媒20Pt10Ru/NiTiO3-600、20Pt10Ru/CoTiO3-600正向峰電流與商用觸媒接近較接近的表現,而乙醇氧化反應中仍以商用觸媒具有較佳的活性。


We research the cobalt-titanium and nickel-titanium perovskite mixed oxide support was used to make PtRu catalyst as the anode of H2 fuel cell, and its hydrogen oxidation activity and alcohol oxidation reaction were analyzed. The conductivity of metal mixed oxide support is not as good as that of traditional carbon black support , but its potential advantage is higher stability than carbon black. The purpose of this paper is to investigate the non-probing carrier perovskite mixed oxide carrier anode reaction catalyst, improve the specific surface area, stability and CO tolerance of the catalyst, and prepare the titanium-containing cobalt-nickel perovskite mixture by the previous co-precipitation in the laboratory. Based on metal oxides (CoTiO3-1000, NiTiO3-1000), further test the influence of preparation parameters on the catalyst. The parameters tested include: different calcination temperatures, different ratios of platinum and ruthenium, and understanding the possible roles of each component in the catalyst , and their effects on electrochemical reaction characteristics and resistance to CO poisoning.
The research results show that the NiTiO3-600 and CoTiO3-600 carriers treated with Sol-gel have high specific surface area characteristics. The onset potential is close to that of the 20Pt10Ru/C-JM commercial catalyst. The hydrogen oxidation reaction (HOR) analysis of the rotating disk electrode in the environment of pure H2 and 250 ppm CO/H2 shows that the NiTiO3-600 supported PtRu catalyst has a better performance than the commercial catalyst. The medium 20Pt10Ru-C-JM has good anti-CO ability, hydrogen oxidation activity and stability. In the methanol oxidation reaction, the forward peak currents of the self-made catalysts 20Pt10Ru/NiTiO3-600 and 20Pt10Ru/CoTiO3-600 are close to those of the commercial catalysts, while the commercial catalysts still have better activity in the ethanol oxidation reaction.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第1章 、緒論 1 1.1前言 1 1.2文獻回顧 3 1.2.1質子交換薄膜燃料電池(PEMFC) 4 1.2.2直接甲醇燃料電池(DMFC) 5 1.2.2.1直接甲醇燃料電池反應機制 6 1.2.3直接乙醇燃料電池(DEFC) 10 1.2.3.1直接乙醇燃料電池陽極觸媒特性 10 1.2.3.2直接乙醇燃料電池反應機制 12 1.3觸媒載體開發及活性金屬介紹 14 1.3.1 Pt金屬觸媒 14 1.3.3.1二元合金觸媒 14 1.3.3.2多元合金觸媒 16 1.3.2碳載體觸媒 17 1.3.3金屬氧化物載體 18 1.3.2.1氧化鈦(Titanium oxides、TiOx) 20 1.3.2.2氧化釕(Rutherium oxides、RuOx) 24 1.3.2.3鈣鈦礦結構(Pervoskite,ABO3) 24 1.4 研究動機 28 第2章 、研究設備與方法 29 2.1研究架構 29 2.2實驗藥品與設備 29 2.2.1實驗藥品與氣體 29 2.2.2實驗設備 30 2.3觸媒載體製備方法 32 2.3.1溶液凝膠法(Sol-gel)改良CoTiO3(或NiTiO3)載體 32 2.4乙二醇熱注射還原法擔載PtRu金屬觸媒 33 2.4.1製備20wt%Pt-10wt%Ru、30wt%Pt-15wt%Ru、40wt%Pt-20wt%Ru 33 2.5材料鑑定方法 34 2.5.1 X光繞射分析(XRD) 34 2.5.2表面積與孔隙度測定儀(BET) 35 2.5.3掃描式電子顯微鏡-能量散射光譜儀(SEM-EDS) 36 2.5.4感應耦合電漿原子放射光譜儀(ICP) 37 2.5.5 X光吸收光譜(XANES) 37 2.6電化學分析方法 39 2.6.1薄膜電極的製備 39 2.6.2可逆氫電極(RHE)製作 40 2.6.3循環伏安法 40 2.6.4 CO電催化氧化分析(CO-Stripping) 40 2.6.5甲醇電催化氧化分析 41 2.6.6乙醇電催化氧化分析 41 2.6.7氫氣氧化反應之陽極測試條件(HOR-pure H2 HOR-250ppm CO/H2) 41 2.6.8電化學活性面表面積CO/H比例計算 42 2.6.9塔弗方程式(Tafel equation) 43 2.6.10氫氣氧化之分析方法 44 第3章 、結果與討論 46 3.1高比表面積CoTiO3、NiTiO3鈣鈦礦載體製備與擔載PtRu觸媒 46 3.1.1載體與觸媒特性分析 47 3.1.1.1 XRD分析 47 3.1.1.2氮氣等溫吸/脫附分析及孔徑分析 55 3.1.1.3材料之形貌及組成分析 62 3.3.1.4 CoTiO3-600載體擔載PtRu製成觸媒Co-K edge 之XANES圖譜 71 3.3.1.5 NiTiO3-600載體擔載PtRu製成觸媒Ni-K edge 之XANES圖譜 73 3.3.1.6 鈣鈦礦載體擔載PtRu製成觸媒Pt-L3 edge之XANES圖譜 75 3.1.2 CoTiO3、NiTiO3擔載 PtRu觸媒之電化學反應特性分析 78 3.1.2.1觸媒之循環伏安法分析 78 3.1.2.2觸媒之CO氧化脫除分析 82 3.1.2.3鈣鈦礦載體擔載PtRu觸媒之氫氣氧化反應分析 87 3.2擔載Pt-Ru金屬製成觸媒應用於醇類電化學反應特性分析 97 3.2.1不同載體擔載PtRu於甲醇氧化電活性探討 97 3.2.2不同載體擔載PtRu於乙醇氧化電活性探討 102 第4章、結論 107 參考文獻 109 附錄A 116 附錄B 氫氣氧化動力學數據處理 117 附錄C SEM EDX-元素分析圖 130 附錄D 甲醇、乙醇不同圈數下峰電流值變化 132

1. 黄朝荣 and 林修正, 燃料電池: 原理與應用. 2005: 五南圖書出版股份有限公司.
2. Andújar, J.M. and F. Segura, Fuel cells: History and updating. A walk along two centuries. Renewable and sustainable energy reviews, 2009. 13(9): p. 2309-2322.
3. Yuan, Y., et al., Illustrative case study on the performance and optimization of proton exchange membrane fuel cell. ChemEngineering, 2019. 3(1): p. 23.
4. Jiménez, S., et al., Assessment of the performance of a PEMFC in the presence of CO. Journal of Power Sources, 2005. 151: p. 69-73.
5. 謝宗達, RuOxHy助觸媒的合成與其對Pt電催化甲醇氧化反應的影響, in 化學工程系. 2013, 國立臺灣科技大學: 台北市. p. 97.
6. Lu, S., et al., One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale, 2017. 9(3): p. 1033-1039.
7. Tong, Y., et al., Metal‐based electrocatalysts for methanol electro‐oxidation: progress, opportunities, and challenges. Small, 2021. 17(9): p. 1904126.
8. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis today, 1997. 38(4): p. 445-457.
9. Zhu, Y., et al., Attenuated total reflection− Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode. Langmuir, 2001. 17(1): p. 146-154.
10. Delime, F. and C. Lamy, Optimization of platinum dispersion in Pt–PEM electrodes: application to the electrooxidation of ethanol. Journal of applied electrochemistry, 1998. 28(1): p. 27-35.
11. Neto, A.O., et al., Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. Journal of Power Sources, 2007. 166(1): p. 87-91.
12. Liu, Z., et al., Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 2005. 149: p. 1-7.
13. Wang, Z.-B., et al., Investigation of ethanol electrooxidation on a Pt–Ru–Ni/C catalyst for a direct ethanol fuel cell. Journal of power sources, 2006. 160(1): p. 37-43.
14. Lamy, C., E. Belgsir, and J. Leger, Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). Journal of Applied Electrochemistry, 2001. 31(7): p. 799-809.
15. Camara, G.A., R. De Lima, and T. Iwasita, The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy. Journal of electroanalytical chemistry, 2005. 585(1): p. 128-131.
16. Page, T., et al., A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS. Journal of Electroanalytical Chemistry, 2000. 485(1): p. 34-41.
17. World Hydrogen Energy Conference, V.l.T.N.D.C.P.J.I.A.f.H.E.S.t.d.i.n.e.s.d.F. Hydrogen energy progress IX : proceedings of the 9th World Hydrogen Energy Conference, Paris, France, 22-25 June 1992. Paris: M.C.I. (Manifestations et Communications Internationales) : [Published on behalf of the International Association for Hydrogen Energy].
18. 謝俊彥, 金修飾對鉑奈米顆粒電催化一氧化碳與甲醇氧化反應的影響, in 化學工程系. 2012, 國立臺灣科技大學: 台北市. p. 100.
19. Wu, Y., et al., A strategy for designing a concave Pt–Ni alloy through controllable chemical etching. Angewandte Chemie, 2012. 124(50): p. 12692-12696.
20. Huang, L., et al., Shape-control of Pt–Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation. Journal of the American Chemical Society, 2018. 140(3): p. 1142-1147.
21. Xiong, L., A. Kannan, and A. Manthiram, Pt–M (M= Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications, 2002. 4(11): p. 898-903.
22. Kim, Y., et al., Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. Journal of Power Sources, 2017. 364: p. 16-22.
23. Li, W., et al., Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta, 2004. 49(7): p. 1045-1055.
24. Ren, X., et al., Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy & Fuels, 2020. 4(1): p. 15-30.
25. Glass, J.T., et al., The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys. Journal of the Electrochemical Society, 1987. 134(1): p. 58.
26. Tsuji, E., et al., Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochimica Acta, 2011. 56(5): p. 2009-2016.
27. Gao, Y., et al., Morphology effect of CeO2 support in the preparation, metal–support interaction, and catalytic performance of Pt/CeO2 catalysts. ChemCatChem, 2013. 5(12): p. 3610-3620.
28. Von Kraemer, S., et al., Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. Journal of Power Sources, 2008. 180(1): p. 185-190.
29. Chhina, H., S. Campbell, and O. Kesler, Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. Journal of the Electrochemical Society, 2007. 154(6): p. B533.
30. Kormanyos, A., et al., Influence of fuels and pH on the dissolution stability of bifunctional PtRu/C alloy electrocatalysts. ACS Catalysis, 2020. 10(19): p. 10858-10870.
31. Lima, A., et al., Investigation of ternary catalysts for methanol electrooxidation. Journal of applied electrochemistry, 2001. 31(4): p. 379-386.
32. Park, K.-W., et al., Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. The Journal of Physical Chemistry B, 2002. 106(8): p. 1869-1877.
33. 周弦篁, 直接甲醇燃料電池應用三元觸媒Pt-Ru-Ni之甲醇電氧化性能, in 機械與機電工程研究所. 2011, 國立虎尾科技大學: 雲林縣. p. 100.
34. Shao, Y., et al., Durability study of Pt∕ C and Pt∕ CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 2006. 153(6): p. A1093.
35. Shahgaldi, S. and J. Hamelin, Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 2015. 94: p. 705-728.
36. Yang, C., et al., Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation. Journal of power sources, 2006. 160(1): p. 187-193.
37. Meier, J.C., et al., Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. Acs Catalysis, 2012. 2(5): p. 832-843.
38. Meier, J.C., et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein journal of nanotechnology, 2014. 5(1): p. 44-67.
39. Samad, S., et al., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. international journal of hydrogen energy, 2018. 43(16): p. 7823-7854.
40. Nagaraju, S., A.S. Roy, and G. Ramgopal, Conductivity of surface modified TiO2 dope nanocomposites. Measurement, 2015. 60: p. 214-221.
41. 彭怡貞, 金屬混合氧化物擔載Pt觸媒製備參數對其氫氣氧化反應的CO耐受性探討, in 化學工程系. 2016, 國立臺灣科技大學: 台北市. p. 165.
42. Benson, J.E., H. Kohn, and M. Boudart, On the reduction of tungsten trioxide accelerated by platinum and water. Journal of catalysis, 1966. 5(2): p. 307-313.
43. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
44. Tauster, S., S. Fung, and R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 1978. 100(1): p. 170-175.
45. Huang, S.-Y., P. Ganesan, and B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011. 102(1-2): p. 71-77.
46. Huang, S.-Y., et al., Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. Journal of the American Chemical Society, 2009. 131(39): p. 13898-13899.
47. Landmann, M., E. Rauls, and W. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of physics: condensed matter, 2012. 24(19): p. 195503.
48. Oi, L.E., et al., Recent advances of titanium dioxide (TiO 2) for green organic synthesis. Rsc Advances, 2016. 6(110): p. 108741-108754.
49. Zhang, L., et al., Ti4O7 supported Ru@ Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Applied energy, 2013. 103: p. 507-513.
50. Suffredini, H., et al., Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry communications, 2004. 6(10): p. 1025-1028.
51. Lasch, K., et al., Mixed conducting catalyst support materials for the direct methanol fuel cell. Journal of power sources, 2002. 105(2): p. 305-310.
52. Pylypenko, S., et al., Composition-and morphology-dependent corrosion stability of ruthenium oxide materials. ACS applied materials & interfaces, 2009. 1(3): p. 604-611.
53. 許夢舫, 以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC), in 材料科學工程學系. 2005, 國立清華大學: 新竹市. p. 111.
54. Ishihara, T., H. Matsuda, and Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. Journal of the American chemical society, 1994. 116(9): p. 3801-3803.
55. Ishihara, T., et al., Application of the new oxide ionic conductor, LaGaO3, to the solid electrolyte of fuel cells. ECS Proceedings Volumes, 1995. 1995(1): p. 344.
56. Huang, K., M. Feng, and J.B. Goodenough, Sol‐gel synthesis of a new oxide‐ion conductor Sr‐and Mg‐doped LaGaO3 perovskite. Journal of the American ceramic society, 1996. 79(4): p. 1100-1104.
57. Ohtomo, A. and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 2004. 427(6973): p. 423-426.
58. Lybye, D., F.W. Poulsen, and M. Mogensen, Conductivity of A-and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics, 2000. 128(1-4): p. 91-103.
59. Zhang, X., et al., Structural, electronic and optical properties of ilmenite ATiO3 (A= Fe, Co, Ni). Materials Science in Semiconductor Processing, 2015. 39: p. 6-16.
60. Lin, Y.-J., et al., Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. Journal of non-crystalline solids, 2006. 352(8): p. 789-794.
61. Pan, T.M., T.F. Lei, and T.S. Chao, Comparison of ultrathin CoTiO 3 and NiTiO 3 high-k gate dielectrics. Journal of Applied Physics, 2001. 89(6): p. 3447-3452.
62. 張育銘, 釕摻雜鑭系層狀鈣鈦礦氧化物觸媒Ln2Ti1.6Ru0.4O7 (Ln= La、Pr和Nd)對乙醇氧化蒸氣重組產氫反應的影響, in 應用化學系碩博士班. 2018, 國立交通大學: 新竹市. p. 130.
63. Sun, C., R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010. 14(7): p. 1125-1144.
64. Murcia-López, S., et al., Insights into the Performance of Co x Ni1–x TiO3 Solid Solutions as Photocatalysts for Sun-Driven Water Oxidation. ACS applied materials & interfaces, 2017. 9(46): p. 40290-40297.
65. Pijpers, J.J., et al., Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proceedings of the National Academy of Sciences, 2011. 108(25): p. 10056-10061.
66. Ye, R., et al., Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS applied materials & interfaces, 2016. 8(22): p. 13879-13889.
67. 楊智翔, 製備以含鈦混合氧化物PtRu觸媒及其在含CO氫氣電化學氧化之研究, in 化學工程系. 2020, 國立臺灣科技大學: 台北市. p. 199.
68. Gojković, S.L., S. Zečević, and R. Savinell, O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons. Journal of the Electrochemical Society, 1998. 145(11): p. 3713.
69. Schmidt, T., et al., Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration. Journal of the Electrochemical Society, 1998. 145(7): p. 2354.
70. Lin, R.-B. and S.-M. Shih, Kinetics of hydrogen oxidation reaction on Nafion-coated Pt/C electrodes under high overpotentials. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5-6): p. 365-370.
71. Rudi, S., et al., Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis, 2014. 5(4): p. 408-418.
72. Yamaji, K., et al., Compatibility of La0. 9Sr0. 1Ga0. 8Mg0. 2O2. 85 as the Electrolyte for SOFCs. Solid State Ionics, 1998. 108(1-4): p. 415-421.
73. Shih, Y.-H., G.V. Sagar, and S.D. Lin, Effect of electrode Pt loading on the oxygen reduction reaction evaluated by rotating disk electrode and its implication on the reaction kinetics. The Journal of Physical Chemistry C, 2008. 112(1): p. 123-130.
74. Higuchi, E., H. Uchida, and M. Watanabe, Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode. Journal of Electroanalytical Chemistry, 2005. 583(1): p. 69-76.
75. Thiagarajan, V., et al., Pt-Ru-NiTiO3 nanoparticles dispersed on vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR). Electrocatalysis, 2018. 9(5): p. 582-592.
76. Chung, D.Y., K.-J. Lee, and Y.-E. Sung, Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation. The Journal of Physical Chemistry C, 2016. 120(17): p. 9028-9035.

QR CODE