簡易檢索 / 詳目顯示

研究生: 陳力語
Li-Yu Chen
論文名稱: 菱角殼纖維與聚羥基烷酸酯複合材之機械性質、生物相容性與生物降解性之研究
The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites
指導教授: 蘇舜恭
Shuenn-kung Su
口試委員: 邱士軒
Shih-Hsuan Chiu
吳進三
Chin-San Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 聚羥基烷酸酯菱角殼纖維生物相容性生物降解性
外文關鍵詞: Poly(hydroxyalkanoate), Chestnut shell fibre, Biocompatibility, Biodegradation
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為評估菱角殼纖維(CSF)與聚羥基烷酸酯(PHA)複合材(PHA/CSF)以及CSF與PHA接枝甲基丙烯酸縮水甘油脂(PHA-g-GMA)複合材(PHA-g-GMA/CSF)之機械性質、生物相容性與生物降解性。
研究發現PHA-g-GMA/CSF相較於PHA/CSF有較好的機械性質,CSF在縮合反應時可以均勻的分散在PHA-g-GMA的基質中;將人包皮成纖維細胞(HFF)附著於這兩種複合材上以測生物相容性;附著於PHA/CSF複合材上FBs之細胞增生率與產生的膠原蛋白皆較PHA-g-GMA/CSF複合材為佳;PHA-g-GMA/CSF複合材比PHA/CSF有較好的抗水性;將兩種複合材放入放射性根瘤菌(Rhizobium radiobacter)中皆有重量的損失,及指出兩種複合材皆有生物降解性,且生物降解性會隨CSF濃度上升而升高,另PHA/CSF與PHA-g-GMA/CSF複合材之生物降解性皆比純的PHA好。


The mechanical properties, biocompatibility and biodegradability of composite materials made from chestnut shell fibre (CSF) and poly(hydroxyalkanoate) (PHA), as well as CSF and glycidyl methacrylate grafted PHA (PHA-g-GMA), were evaluated. Composites formed from PHA-g-GMA/CSF were found to have noticeably superior mechanical properties compared with those of PHA/CSF. CSF could be homogeneously dispersed in the PHA-g-GMA matrix as a result of condensation reactions. Human foreskin fibroblasts (FBs) were seeded on these two series of composites to characterise the biocompatibility properties. FB proliferation and collagen production on the PHA/CSF series of composites were superior to that on the PHA-g-GMA/CSF composites. PHA-g-GMA/CSF was found to be more water resistant than PHA/CSF, although the weight loss of both composites buried in Rhizobium radiobacter compost indicated that both were biodegradable, especially at high levels of CSF substitution. Furthermore, the PHA/CSF and PHA-g-GMA/CSF composites were more biodegradable than pure PHA.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VIII 表索引 IX 第一章 緒論 1 1.1 研究背景與目的 1 第二章 文獻回顧 4 2.1 PHA之介紹 4 2.2 合成PHA之主要微生物 8 2.3 PHAs的發酵培養方式 10 2.4 活性污泥合成PHAs之方法介紹 11 2.4.1 活性污泥合成PHAs原理 11 2.4.2 EBPR工藝用於PHAs生產的特點和流程 12 2.5 活性污泥合成PHA的影響因素 14 2.5.1 底物的影響 14 2.5.2 營養元素比例的影響 15 2.5.3 SRT的影響 16 2.5.4 pH值的影響 16 2.5.5 溫度的影響 17 2.6 聚合物改性介紹 18 2.7 PHAs之改性介紹 19 2.7.1 生物改性 19 2.7.1.1 PHBV之生物改性 20 2.7.1.2 P3/4HB之生物改性 20 2.7.1.3 PHBHHx之生物改性 21 2.7.2 化學改性 21 2.7.3 物理改性 22 2.8 PHBV接枝GMA (PHBV-g-GMA)之介紹 23 2.8.1 GMA接枝於PHBV上之反應機制 23 2.8.2 PHBV-g-GMA之熱性能與結晶結構 25 2.9 GMA之介紹 26 2.10 引入菱角殼(CSF)之目的 28 2.10.1 農業廢棄物 28 第三章 實驗方法與原理 30 3.1 實驗藥品 30 3.2 實驗儀器 31 3.3 PHA-g-GMA共聚物的製備 32 3.4 Chestnut shell fibre (CSF)的製備 33 3.5 PHA/CSF與PHA-g-GMA/CSF複合材的製備 34 3.6 物理性質測定方法 35 3.6.1 CPMAS-NMR(交叉極化魔角旋轉NMR)測定 35 3.6.2 示差掃描熱卡計量測(DSC) 35 3.6.3 黏度計 36 3.7 機械測試 36 3.8 複合材表面型態觀察 36 3.9 Human foreskin fibroblasts 在PHA系複合材上之生物功能性 37 3.9.1 細胞與培養基 37 3.9.2 以MTT試驗測試細胞存活率分析 37 3.9.3 膠原蛋白定量 38 3.10 吸水率 39 3.11 微生物測試樣品的配製並置入R. radiobacter (放射型根瘤菌)中 40 第四章 結果與討論 41 4.1 PHA與其複合材之物理性質 41 4.2 PHA與其複合材之表面型態與機械性質 43 4.3 PHA與其複合材之熱學特性 47 4.4 PHA與其複合材之生物相容性 48 4.5 PHA與其複合材之吸水率 51 4.6 PHA與其複合材之生物降解性 52 第五章 結論 56 參考文獻 57

[1] Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 2013; 65(4): 581-603.
[2] Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 2011; 7(4):1441-1451.
[3] Xiang Y, Wang Y, Luo Y, Zhang B, Xin J, Zheng D. Molecular biocompatibility evaluation of poly(D, L-lactic acid)-modified biomaterials based on long serial analysis of gene expression. Colloids Surf B Biointerfaces 2011; 85(2): 248-261.
[4] Lee LY, Wu SC, Fu SS, Zeng SY, Leong WS, Tan LP. Biodegradable elastomer for soft tissue engineering. Eur Polym J 2009; 45(11): 3249-3256.
[5] Kim G, Rho Y, Park S, Kim H, Son S, Kim H, et al. The biocompatibility of selfassembled brush polymers bearing glycine derivatives. Biomaterials 2010; 31(14): 3816-3826.

[6] Adamus G, Sikorska W, Janeczek H, Kwiecie M, Sobota M, Kowalczuk M. Novel block copolymers of atactic PHB with natural PHA for cardiovascular engineering: synthesis and characterization. Eur Polym J 2012; 48(3): 621-631.
[7] Rohmana G, Pettit JJ, Isaurea F, Camerona NR, Southgate J. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro. Biomaterials 2007; 28(14): 2264-2274.
[8] Zhu A, Zhang M, Wu J, Shen J. Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials 2002; 23: 4657-4665.
[9] Dong CL, Li SY, Wang Y, Dong Y, Tang JZ, Chen JC, et al. The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide. Biomaterials 2012; 33(9): 2593-2599.
[10] Köse GT, Korkusuz F, Özkul A, Soysal Y, Özdemir T, Yildiz C, et al. Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials 2005; 26(25): 5187-5197.
[11] Zhao Q, Tao J, Richard CMY, Albert CKM, Robert KYL, Song C. Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 2008; 93(8): 1571-1576.
[12] Pradhan R, Misra M, Erickson L, Mohanty A. Compostability and biodegradation study of PLAewheat straw and PLAesoy straw based green composites in simulated composting bioreactor. Bioresour Technol 2010; 101(21): 8489-8491.
[13] Noh JR, Gang GT, Kim YH, Yang KJ, Hwang JH, Lee HS, et al. Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food Chem Toxicol 2010; 48(11): 3177-3183.
[14] Noh JR, Kim YH, Gang GT, Hwang JH, Lee HS, Ly SY, et al. Hepatoprotective effects of chestnut (Castanea crenata) inner shell extract against chronic ethanol-induced oxidative stress in C57BL/6 mice. Food Chem Toxicol 2011; 49(7): 1537-1543.
[15] 严群; 李寅; 陈坚; 堵国成;.微生物合成中链聚羟基烷酸酯研究进展[J]. 生物工程学报, 2001, 17(5).
[16] Akiyama H, Okuhata H, Onizuka T, Kanai S, Hirano M, Tanaka S, et al. Antibiotics- free stable polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. Bioresour Technol 2011; 102(23):11039-11042.
[17] Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 2010; 95(12): 2350-2359.
[18] Bhatt R, Shah D, Patel KC, Trivedi U. PHAerubber blends: synthesis, characterization and biodegradation. Bioresour Technol 2008; 99(11): 4615-4620.
[19] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci, 2000, 25: 1503−1555.
[20] 黄媛媛. 活性污泥合成聚羟基脂肪酸脂的研究进展[J]. 生物技术通报, 2009(6).
[21] Wu Q, Huang HH, Hu GH, Chen JC, Ho KP, Chen GQ . Constitutive Production of Poly-3-hydroxybutyrate by strain of Bacillus aureus JMa5 Cultivated in Molasses Media. Antonie van Leeuwenhoek 80 (2) (2001)111-118.
[22] Lee J, Lee SY, Park S, Middelberg APJ. Control of fed-batch fermentations. Biotechnol Adv 1999; 17: 29-48
[23] 陈国强,张广,赵锴,等. 聚羟基脂肪酸酯的微生物合成,性质和应用[J].无锡轻工大学学报, 2002, 21(2): 198-208.
[24] Chen GQ, Wu Q, Xi J, et al. Microbial production of biopolyesters- polyhydroxyalkanoates [J]. Natr Sci, 2000, 10: 843-850.
[25] 郝暁地,朱景义,曹秀芹. 利用混合菌群活性污泥法实現生物可降解塑料PHA的合成,生态环境 2005, 14(6):964-971.
[26] 张运海. 利用混合菌群合成聚羟基烷酸酯工艺条件优化 2010
[27] P.C. Lemos, L.S. Serafim, M.A.M. Reis, Polyhydroxyalkanoates production by activated sludge in a SBR using acetate and propionate as carbon sources, Water Sci. Technol., 50 (2004), 189–194.
[28] 吴光学,管运涛. SRT及碳源浓度对厌氧/好氧交替运行SBR工艺中PHB的影响,环境科学 2005, 2: 126-130.
[29] L.S. Serafim, P.C. Lemos, R. Oliveira, M.A.M. Reis, Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions, Biotechnol. Bioeng., 87 (2) (2004), 145–160.
[30] 魏书斋,孙静,刘丽丽. 活性污泥积累PHA的研究进展[J]. 山东水利, 2007(8):29-32, 50.
[31] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 2000, 25: 1503-1555.
[32] Anderson A J, Dowes E A. Occurense, metabolism, metabolic role, and industrial use of bacterial polyhydroxyalkanoates. Microb. Rev., 1990, 54: 450-472.
[33] 堵国成,陈坚,郁明,陈银广,伦世仪. 基于微生物反应原理的培养环境优化技术. 微生物学报, 1999, 39: 247-254.
[34] Saito Y, Nakamura S, Hiramatsu M, Doi Y. Microbial Synthesis and Properties of Poly( 3- hydroxybutyrate-co-4-hydroxybutyrate). Polym. Int., 1996, 39: 169~174
[35] 李荷,欧阳少平,吴琼,陈国强. 丁醇对发酵生产3-羟基丁酸与3-羟基己酸共聚酯( PHBHHx) 单体组成的影响. 中国生物工程杂志, 2003, 23: 72~75.
[36] Nguyen S, Marchessault RH. Synthesis and Properties of Graft Copolymers Based on Poly(3-hydroxybutyrate) Macromonomers. Macromol Biosci, 2004, 4: 262-268.
[37] Li J, Ni X, Li X, Tan NK, Lim CT, Ramakrishna S, Leong KW. Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir. 2005; 21(19): 8681-8685.
[38] 李静, 刘景江. 聚(β-羟基丁酸酯)和β-羟基丁酸酯-β-羟基戊酸酯共聚物共混改性研究进展. 功能高分子学报, 2003, 16: 392-404.
[39] 李静. PHBV-GMA与PHBV-GMA/PPC共混物中接枝物的热性能与型态结构. 高分子通报, 2010, 6: 61-66.
[40] 李静. 生物降解PHBV/PPC 反应共混物中接枝产物的研究. 天津科技大学学报, 2009, 6: 20-25.
[41] Cho KY, Eom JY, Kim CH, Park J-K. Grafting of glycidyl methacrylate onto high-density polyethylene with reaction. J Appl Polym Sci 2008; 108(2): 1093-1099.
[42] Lopez-Cuellara MR, Alba-Flores J, Gracida Rodriguez JN, Perez-Guevara F. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 2011; 48(1): 74-80.
[43] Correia P, Cruz-Lopes L, Beirão-da-Costa L. Morphology and structure of chestnut starch isolated by alkali and enzymatic methods. Food Hydrocolloids 2012; 28(2): 313-319.
[44] Jone Selvamalar CS, Vijayanand PS, Penlidis A, Nanjundan S. Homopolymer and copolymers of 4-benzyloxycarbonylphenyl acrylate with glycidyl methacrylate: synthesis, characterization, reactivity ratios, and application as adhesive for leather. J Appl Polym Sci 2004; 91(6): 3604-3612.
[45] Tran LQN, Fuentes CA, Dupont-Gillain C, Van Vuure AW, Verpoest I. Wetting analysis and surface characterization of coir fibres used as reinforcement for composites. Colloids Surf A 2011; 377(1-3): 251-260.
[46] Wu CS, Liao H-T. Polycaprolactone-based green renewable ecocomposites made from rice straw fiber: characterization and assessment of mechanical and thermal properties. Ind Eng Chem Res 2012; 51(8): 3329-3337.
[47] Shih YF, Chen LS, Jeng RJ. Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 2008; 49(21): 4602-4611.
[48] Nyambo C, Mohanty AK, Misra M. Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 2010; 11(6): 1654-1660.
[49] Bhardwa R, Mohanty AK, Drza LT, Pourboghrat F, Misra M. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 2006; 7(6): 2044-2051.
[50] Zhu Y, Chan-Park MB. Density quantification of collagen grafted on biodegradable polyester: its application to esophageal smooth muscle cell. Anal Biochem 2007; 363(1): 119-127.
[51] Helen W, Gough JE. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/bioglass composite foam scaffolds in vitro. Acta Biomater 2008; 4(2): 230-243.
[52] Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater 2010; 6(3): 1149-1157.
[53] 楊紹榮. 農業廢棄物處理與再利用, 台南區農業改良場

無法下載圖示 全文公開日期 2019/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE