簡易檢索 / 詳目顯示

研究生: 林育奇
Yu-chi Lin
論文名稱: Ti-6Al-4V合金表面被覆陶瓷粉末之微結構及磨耗行為研究
A Study of Microstructure and Wear Behaviors on Ti-6Al-4V Alloy with Ceramics Powder
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
Hon So
呂道揆
Daw-Kwei Leu
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 156
中文關鍵詞: 碳化矽碳化鎢硼化鎢二硼化鈦氮化鈦氬銲被覆顯微結構耐磨耗
外文關鍵詞: SiC, WC, WB, TiB2, TiN, GTAW, clad, microstructure, wear resistance
相關次數: 點閱:401下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文將不同的陶瓷粉末,碳化物(碳化矽、碳化鎢)、硼化物(硼化鎢、二硼化鈦)及氮化物(氮化鈦),利用惰性氣體鎢極電弧銲(GTAW)被覆於Ti-6Al-4V基材表面,一方面為了改善Ti-6Al-4V表面的耐磨耗性能,另一方面針對被覆層內的顯微組織、強化相型態及不同陶瓷粉末被覆層耐磨耗性能加以評估,進行系統化的探討,並藉由各種分析結果提出被覆層顯微結構形成的示意圖。
綜合研究結果顯示,相較於基材被覆層能有效提升硬度,並且大幅提升耐磨耗能力。被覆層中強化相的排列型式、成長方式以及幾何形狀明顯影響被覆層的耐磨耗能力。此外,以SiC被覆層的耐磨耗性能較優於其他被覆層,而TiB2被覆層最差,這歸因於SiC被覆層中強化相排列複雜,使強化相與基地相彼此間產生機械固鎖效應以及強化相與基地相結合強度較高。


In this treatise, different ceramic powders, carbide (SiC, WC), boride (WB, TiB2) and nitride (TiN) were clad on Ti-6Al-4V by gas tungsten arc welding (GTAW) method. On the one hand clad layer was to improve surface wear resistance of Ti-6Al-4V, and on the other hand study wear behaviors of clad layer affected by microstructure, reinforcement form and wear resistance of different ceramic clad layer. From the morphology of this microstructure and the related analysis results, a reasonable hypothesis for the evolution of this microstructure formation processes is proposed as following.
To synthesize the results, the hardness and wear resistance of the clad layer were higher than the substrate conspicuous. The reinforcement arrange, growth direction and geometric were very important and influence the wear performance of the clad layer. Therefore, the SiC clad layer has the best wear resistant and the TiB2 clad layer has the worst wear resistant. It was due to the reinforcements arrange complicate, mechanical locking effect of reinforcements and the reinforcements has the high bond with the clad layer.

摘要 I Abstact II 誌謝 III 目錄 IV 表索引 VIII 圖索引 IX 第一章 前言 1 第二章 文獻回顧 3 2-1 鈦合金表面改質處理 3 2-1-1 鈦合金的特性 3 2-1-2 鈦合金被覆層的相關研究 3 2-2 鈦合金被覆的方式 5 2-2-1 電漿噴覆 (Plasma Spray) 7 2-2-2 離子植入 (Ion-implantation) 7 2-2-3 熱氧化 (Thermal Oxidation) 7 2-2-4 陽極處理 (Anodizing) 8 2-2-5 表面滲氮 (Nitriding) 8 2-2-6 雷射被覆 (Laser Cladding) 8 2-2-7 惰氣鎢極電弧銲 (GTAW) 9 2-3 熔融銲接的凝固特微與形態 10 2-3-1 顯微結構 10 2-3-2 銲道外觀形態 13 2-4 陶瓷粉末的特性 14 2-4-1 氮化鈦 (Titanium Nitride) 14 2-4-2 硼化鎢 (Tungsten Boride) 15 2-4-3 二硼化鈦 (Titanium Diboride) 16 2-4-4 碳化鎢 (Tungsten Carbide) 17 2-4-5 碳化矽 (Silicon Carbide) 18 2-5 化合物對被覆層硬度之影響 19 2-5-1 氮與合金元素反應之化合物 19 2-5-2 硼與合金元素反應之化合物 20 2-5-3 碳與合金元素反應之化合物 20 2-5-4 金屬間化合物 21 2-6 被覆層的強化機構 21 2-6-1 細晶粒強化 (Fine Grain Size Strengthening) 22 2-6-2 析出強化 (Precipitation Strengthening) 22 2-6-3 麻田散體強化 (Martensite Strengthening) 22 2-6-4 散佈強化 (Dispersion Strengthening) 23 2-7 磨耗機構 23 2-7-1 刮磨磨耗 (Adrasive Wear) 24 2-7-2 黏著磨耗 (Adhesive Wear) 25 2-7-3 氧化磨耗 (Oxidative Wear) 27 2-7-4 剝層磨耗 (Delamination Wear) 33 第三章 實驗過程 35 3-1氬銲被覆方法 37 3-1-1 基材被覆前處理 37 3-1-2 準備預敷熔填銲條試片的程序 37 3-1-3 被覆方式 38 3-1-4 被覆試片的校正 39 3-1-5 氬銲被覆參數 40 3-2磨耗試片的製作 41 3-2-1 磨耗上試片的製作 41 3-2-2 磨耗下試片的處裡 42 3-3 被覆層微硬度測試 44 3-4 被覆層顯微組織的觀察與成份分析 44 3-5 磨耗試驗 45 3-5-1 磨耗試驗機的校正 45 3-5-2 磨耗試驗之條件 45 3-5-3 磨耗量的量測與計算 47 3-5-4 磨耗表面的觀察 49 3-6 被覆粉末的粒徑量測 49 3-7 分析儀器及磨耗儀器介紹 53 3-7-1 磨耗試驗儀器的介紹 53 3-7-2 分析儀器的介紹 54 第四章 結果與討論 56 4-1 入熱量對被覆層之影響 56 4-1-1 入熱量對被覆層表面之影響 56 4-1-2 入熱量對被覆層熔滲深度之影響 59 4-2 被覆層成份分析與微觀組織 63 4-2-1 碳化物被覆層 63 4-2-2 硼化物被覆層 87 4-2-3 氮化物被覆層 106 4-3 被覆層的硬度分佈 115 4-3-1 碳化物被覆層硬度分佈 115 4-3-2 硼化物被覆層硬度分佈 117 4-3-3 氮化物被覆層硬度分佈 119 4-3-4 碳、硼、氮化物被覆層的硬度比較 121 4-4 被覆層的耐磨耗能力評估 122 4-4-1 Ti-6Al-4V基材耐磨耗能力評估 122 4-4-2 碳化物被覆層耐磨耗能力評估 122 4-4-3 硼化物被覆層耐磨耗能力評估 132 4-4-4 氮化物被覆層耐磨耗能力評估 142 4-4-5 碳、硼、氮化物被覆層磨耗能力評估 148 第五章 結論與建議 150 5-1 結論 150 5-2 未來研究方向的建議 151 參考文獻 152

1. R.L. Sun, D.Z. Tang, L.X. Guo, S.L. Dong, Laser cladding of Ti-6Al-4V alloy with TiC and TiC+NiCrBSi powders, Surface and Coating Technology, Vol. 135, No. 2, pp. 307-312, 2001.
2. M.H. Wang, Y.F. Liu, L.X. Guo, S.L. Dong, Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy, Materials Science and Engineering A, Vol. 338, pp. 126-132, 2002.
3. 陳民瑜, 鈦合金表面雷射被覆氧化鋯之研究, 國立台灣科技大學碩士論文, 2003。
4. Y. Wang, H.M. Wang, Wear resistance of laser clad Ti2Ni3Si reinforced intermatallic composite coatings on titanium alloy, Applied Surface Science, Vol. 229, No. 1-4, pp. 81-86, 2004.
5. Q.W. Meng, L. Geng, D. Ni, Laser cladding NiCoCrAlY coating on Ti-6Al-4V, Materials Letters, Vol. 59, No. 22, pp. 2774-2777, 2005.
6. K. Holmberg, A. Matthews, Coatings Tribology, Elsevier, Armsterdam, Netherland, 1994.
7. I.M. Hutchings, Friction and Wear of Engineering Materials, Boca Raton, CRC Press, 1992.
8. K.A. Khor, Y.W. Gu, C.H. Quek, P. Cheang, Plasma spraying of functionally graded hydroxyapatitey Ti-6Al-4V coatings, Surface and Coatings Technology, Vol. 168, pp. 195-201, 2003.
9. Y. Itoh, A. Itoh, H. Azuma, T. Hioki, Improving the tribological properties of Ti-6Al-4V alloy by nitrogen-ion implantation, Surface and Coatings Technology, Vol. 111, pp. 172-176, 1999.
10. F. Borgioli, E. Galvanetto, F. Iozzelli, G. Pradelli, Improvement of wear resistance of Ti-6Al-4V alloy by means of thermal oxidation, Materials Letters, Vol. 59, pp. 2159-2162, 2005.
11. M.M. Yazdanian, A. Edrisy, A.T. Alpas, Vacuum sliding behaviour of thermally oxidizes Ti-6Al-4V, Surface and Coating Technology, Vol. 202, No. 4-7, pp. 1182-1188, 2007.
12. J.M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions, Wiley InterScience, pp.928, 2005
13. K.C. Chen, G.J. Jaung, D.c. diode ion nitriding behavior of titanium and Ti-6AI-4V, Thin Solid Films, Vol. 303, pp. 226-231, 1997.
14. D. Galvan, V. Ocelik, Y. Pei, B.J. Kooi, Jeff T.M. De Hosson, E. Ramous, Microstructure and properties of TiB/ Ti-6Al-4V coatings produced with laser treatments, Journal of Materials Engineering and Performance, Vol. 13, No. 4, pp. 406-412, 2004.
15. S.W. Wang, Y.C. Lin, Y.Y. Tsai, The effects of various ceramic-metal on wear performance of clad layer, the 6th Asia Pacific Conference on Materials Processing (6th APCMP), Taipei, Taiwan, 2003.
16. 郭俊資, 稀土元素(氧化鑭)對Ti-6Al-4V合金表面被覆層磨耗性能之影響, 國立台灣科技大學碩士論文, 2008。
17. 高鈺涵, Ti-6Al-4V合金表面被覆碳化硼及合金元素(Ni、Cr、Si、W)之微結構與磨耗行為研究, 國立台灣科技大學碩士論文, 2009。
18. J.F. Lancaster, Metallurgy of welding, London, Chapman & Hall, 1993.
19. H.F. Brinson, Engineered materials handbook, Vol. 4, ASM International, Metals Park, Ohio, 1987.
20. Y. S. Tina, C.Z. Chen ,L.X .Chen, Q. H. Huo, Crack-free wear resistance coatings produced on pure titanium and Ti-6Al-4V by laser nitriding, Surface Review and Letters, Vol. 12, pp. 741-744, 2005.
21. K.A. Khor, L.G. Yu, G. Sundararajan, Formation of hard tungsten boride layer by spark plasma sintering boriding, Thin Solid Films, Vol. 478, pp. 232-237, 2005.
22. B.J. Kooi, Y.T. Pei, J.Th.M.De Hosson, The evolution of microstructure in a laser clad TiB-Ti composite coating, Acta Materialia, Vol. 51, pp. 831-845, 2003.
23. V. Ocelik, D. Matthews, J.Th.M. De Hosson, Sliding wear resistance of metal matrix composite layers prepared by high power laser, Surface & Coatings Technology, Vol. 197, pp. 303-315, 2005.
24. Y.S. Tian , C.Z. Chen, L.X. Chen, Q.H. Huo, Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6Al-4V with graphite and silicon mixed powders, Material Letters, Vol. 60, No. 1, pp. 109-113, 2006.
25. P. Jiang, X.L. He, X.X. Li, L.G. Yu, H.M. Wang, Wear resistance of a laser surface alloyed Ti-6Al-4V alloy, Surface and Coatings Technology, Vol. 130, pp. 24-28, 2000.
26. K.S. Ravi Chandran, K.B. Panda, S.S Sahay, TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs, JOM, Vol. 56, No. 5, pp. 42-48, 2004.
27. J. Schmidt, M. Boehling, U. Burkhardt, Y. Grin, Prepared of titanium diboride TiB2 by spark plasma sintering at slow heating rate, Science and Technology of Advanced Materials, Vol. 8, No. 5, pp. 376-382, 2007.
28. W.J. Li, R. Tu, T. Goto, Preparation of directionally solidified TiB2-TiC eutectic composites by a floating zone method, Materials Letters, Vol. 60, No. 6, pp. 839-843, 2006.
29. T. Yamamoto, A. Otsuki, K. Ishihara, P.H. Shingu, Synthsis of near net shape high density TiB/Ti composite, Materials Science and Engineering A, Vol. 239-240, pp. 647-651, 1997.
30. S.Q. Yang, Q.W. Meng, L. Geng, L.X. Guo, L. Wu, Ni-TiC coating deposited on Ti-6Al-4V substrate by thermal spraying and laser remelting of Ni-clad graphite powder, Materials Letters, Vol. 61, No.11-12, pp. 2356-2358, 2007.
31. H. Sin, N. Saka, N.P. Suh, Abrasive wear mechanisms and the grit size effect, Wear, Vol. 55, pp. 163-190, 1979.
32. G.W. Stachowiak, A.W. Batchelor, Engineering tribology, Amsterdam, Elsevier, New York, 1993.
33. C. Horst, Tribology : a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York, 1978.
34. V.V. Pokropivny, V.V. Skorokhod, A.V. Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials letters, Vol. 31, pp. 49-54, 1997.
35. D. Markov, D. Kelly, Mechanisms of adhesion-initiated catastrophic wear: pure sliding, Wear, Vol. 239, pp. 189-210, 2000.
36. T.F.J. Quinn, J.L. Sullivan, D.M. Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear, Vol. 94, pp. 175-191, 1984.
37. T.F.J. Quinn, W.O. Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology, Vol. 109, pp. 315-320, 1987.
38. M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear, Vol. 173, pp. 105-114, 1994.
39. T.F.J. Quinn, Computional methods applied to oxidational wear, Wear, Vol. 199, pp. 169-180, 1996.
40. T.F.J. Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear, Vol. 216, pp. 262-275, 1998.
41. T.F.J. Quinn, The oxidational wear of low alloy steels, Tribology International, Vol. 35, pp. 694-715, 2002.
42. J.M. Guilemany, J.M. Miguel, S. Vizcaino, F. Climent, Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying, Surface and Coatings Technology, Vol. 140, pp. 141-146, 2001.
43. H. So, The mechanism of oxidational wear, Wear, Vol. 184, pp. 161-167, 1995.
44. N.P. Suh, The delamination theory of wear, Wear, Vol. 25, pp. 111-124, 1973.
45. Y.C. Lin, Y.H. Cho, Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ, Surface and Coatings Technology, Vol. 203, pp. 1694-1701, 2009.
46. George F. Vander Voort, Metallography principles and practice, McGraw-Hill, New York, USA, 1984.
47. 李明奇, 製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響, 國立台灣科技大學碩士論文, 1998。
48. ASM handbook, vol. 3, Alloy Phase Diagrams.
49. Weijie Lu, Di Zhang, Xiaonong Zhang, Renjie Wu, HREM study of TiB/Ti interfaces in a Ti-TiB-TiC in situ composite, Scripta materials, Vol. 44, pp. 1069-1075, 2001.
50. L. Rebouta, F. Vaz, M. Andritschky, M. F. Da Silva, Oxidation resistance of(Ti, Al, Zr, Si)N coatings in air, Surface and Coatings Technology, Vol. 76-77, pp. 70-74, 1995.

QR CODE