簡易檢索 / 詳目顯示

研究生: 邱俊榮
CHUN-JUNG CHIU
論文名稱: 丙烯腈寡聚物膜作為固態鋰電池電解質之合成及量測
Synthesis and measurements of poly-acrylonitrile oligomer membranes for lithium battery solid electrolyte
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 可逆加成-斷裂鏈轉移法聚丙烯腈離子導電率離子導體電化學窗口
外文關鍵詞: Reversible addition-fragmentation chain transfer method, Polyacrylonitrile, Ionic conductivity, Ionic conductor, Electrochemical window
相關次數: 點閱:453下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 致謝 I 摘 要 II ABSTRACT IV 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 4 2.1.1 固態電解質 4 2.1.2 聚合物電解質 4 2.1.3 聚環氧乙烷 5 2.1.4 聚碳酸酯及聚酯 6 2.1.5 聚丙烯腈 7 2.2.1 聚合物分子量對離子導電率的影響 8 2.2.2 分子量控制聚合法 10 2.2.3 可逆加成-斷裂鏈轉移聚合法(RAFT) 11 第三章 實驗方法與步驟 13 3.1 實驗藥品耗材與儀器設備 13 3.1.1 實驗藥品 13 3.1.2 實驗儀器與設備 16 3.1.3 其他藥品耗材與儀器設備 18 3.1.4 材料鑑定及儀器設備 18 3.1.5 電化學分析及儀器設備 19 3.2 實驗流程 20 3.2.1 合成RAFT試劑(Dibenzyl trithiocarbonate, DBTTC) 20 3.2.2 可逆加成斷鏈鏈轉移合成聚合法合成聚丙烯腈 22 3.2.3 電化學量測流程 23 3.2.4 電化學量測構型組裝 24 3.2.4.1 對稱電池(symmetric cell)構型 24 3.2.4.2 非對稱電池(asymmetric cell)構型 25 3.3 實驗方法 26 3.3.1 拋光不鏽鋼墊片製備 26 3.3.2 PAN寡聚物電解質合成 26 3.3.2.1 溶入LiTFSI鋰鹽於PAN寡聚物 26 3.3.2.2 以LiFSI作為鋰鹽 27 3.3.3 對稱電池之構型製作 27 3.3.3.1 以LiTFSI作為鋰鹽 27 3.3.3.2 以LiFSI作為鋰鹽 28 3.3.4 非對稱電池之構型製作 29 3.4 固態電解質鑑定與分析 29 3.4.1 傅立葉紅外線光譜儀(FTIR) 29 3.4.2 差示掃描量熱法(DSC) 30 3.4.3 黏度分子量 31 3.4.4 電化學交流阻抗分析(AC impedance) 32 3.4.4.1 電化學交流阻抗分析原理 32 3.4.4.2 交流阻抗量測與離子導電率計算 33 3.4.5 循環伏安法(CV) 36 第四章 結果與討論 37 4.1 鏈轉移試劑DBTTC鑑定分析 37 4.2 傅立葉紅外線光譜儀(FTIR) 40 4.3 示差掃描熱分析(DSC) 41 4.4 黏度測分子量 45 4.5 電化學交流阻抗分析 47 4.5.1 交流阻抗分析LiTFSI作鋰鹽的丙烯腈寡聚物 47 4.5.2 交流阻抗分析以LiFSI當作鋰鹽 61 4.6 循環伏安法(CV) 67 第五章 結論 80 參考文獻 82

1.鋰離子電池原理與技術:p. 530-534.。
2.Vignarooban, K., et al., Current trends and future challenges of electrolytes for sodium-ion batteries. Int. J. Hydrogen Energy, 41 (2016) 2829-2846.
3.C. Berthier, W. Gorecki, M. Minier, M.E. Armand, J.M. Chabagno, P. Rigaud, Microscopic investigation of ion conductivity in alkali metal salts – polyethylene oxide adducts. Solid State Ionics, 11 (1983) 91-95.
4.D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with polyethylene oxide. Polymer, 14 (1973) 589.
5.P. Ferloni, G. Chiodelli, A. Magistris, M. Sanesi, Ion transport and thermal properties of polyethylene oxide – LiClO4 polymer electrolytes, Solid State Ionics, 18-19 (1986) 265-279.
6.A. Arya, A. L. Sharma, Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN+LiPF6 for energy storage, Appl. Sci. Lett. 2 (2016) 72-75.
7.A. Arya and A.L. Sharma, Insights into the use of polyethylene oxide in energy storage/ conversion devices. J. Phys. D: Appl. Phys. 50 (2017) 443002.
8.R. Frech, S. Chintapalli, P.G. Bruce, C.A. Vincent, Structure of an amorphous polymer electrolyte PEO: LiCF3SO3 Chem. Commun. (1997) 157-158.
9.S. Xue, Y. Liu, Y. Li, D. Teeters, D.W. Crunkleton, S. Wang, Diffusion of lithium ion in amorphous and crystalline PEO:LiCF3SO3 polymer electrolytes. Electrochim. Acta 235 (2017) 122-128.
10.Y. Tominaga, V. Nanthana, D. Tohyama, Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts. Polymer J. 44 (2012) 1155-1158.
11.Y. Tominaga, K. Yamazaki, V. Nanthana, Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes. J. Electrochem. Soc. 162 (2015) A3133-A3136.
12.Y. Tominaga, Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polymer J. 49 (2017) 291-299.
13.K. Kimura, M. Yajima, Y. Tominaga, A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 66 (2016) 46-48.
14.K. Kimura, J. Motomatsu, Y. Tominaga, Highly Concentrated Polycarbonate-Based Solid Polymer Electrolytes Having Extraordinary Electrochemical Stability. J. Polymer Sci. Part B 54 (2016) 2442-2447.
15.T. Okumura, S. Nishimura, Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ionics 267 (2014) 68–73.
16.M. Melchiors, H. Keul, H. Hocker, Preparation and properties of solid electrolytes on the basis of alkali metal salts and poly(2,2-dimethyltrimethylene carbonate block polyethylene oxide block 2,2-dimethyltrimethylene carbonate). Polymer 37 (1996) 1519-1527.
17.B. Sun, J. Mindemark, K. Edström, D. Brandell, Realization of high performance polycarbonate-based Li polymer batteries. Electrochem. Commun. 52 (2015) 71-74.
18.M.D. Konieczynska, X. Lin, H. Zhang, M.W. Grinstaff, Synthesis of Aliphatic Poly(ether 1,2-glycerol carbonate)s via copolymerization of CO2 with glycidyl ethers using a cobalt salen catalyst and study of a thermally stable solid polymer electrolyte. ACS Macro Lett. 4 (2015) 533-537.
19.M. Nakamura, Y. Tominaga, Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers. Electrochim. Acta 57 (2011) 36-39.
20.J. Zhang , J. Zhao , L. Yue , Q. Wang , J. Chai , Z. Liu, X. Zhou , H. Li , Y. Guo , G. Cui, L. Chen, Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. Adv. Energy Mater. 5 (2015) 1501082.
21.Y. Tominaga and K. Yamazaki, Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 50 (2014) 4448-4450.
22.C.P. Fonseca, S. Neves, Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J. Power Sources 159 (2006) 712-716.
23.C.P. Fonseca, D.S. Rosa, F. Gaboardi, S. Neves, Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 159 (2006) 381-384.
24.M. Watanabe, M. Rikukawa, K. Sanui, N. Ogata, Effects of polymer structure and incorporated salt species on ionic conductivity of polymer complexes formed by aliphatic polyesters and alkali metal thiocyanate. Macromolecules 19 (1986) 188-192.
25.R. Dupon, P.L. Papke, M.A. Ratner, D.F. Shriver, Ion transport in the polymer electrolytes formed between poly(ethylene succinate) and lithium tetrafluoroborate. J. Electrochem. Soc. 131 (1984) 586-589.
26.Y.C. Lee, M.A. Ratner, D.F. Shriver, Ionic conductivity in the poly(ethylene malonate) / lithium triflate System. Solid State Ionics 138 (2001) 273-276.
27.M. Watanabe, M. Togo, K. Sanui, N. Ogata, T. Kobayahi, Z. Ohtaki, Ion conductivity of polymer complexes formed by Poly(-propiolactone) and lithium perchlorate. Macromolecules 17 (1984) 2908-2912.
28.I.D. Wu, F.C. Chang, Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48 (2007) 989-996.
29.C.-K. Lin, I.-D. Wu, Investigating the effect of interaction behavior on the ionic conductivity of Polyester/LiClO4 blend systems. Polymer 52 (2011) 4106-4111.
30.M.A. Webb, Y. Jung, D.M. Pesko, B.M. Savoie, U. Yamamoto, G.W. Coates, N.P. Balsara, Z.-G. Wang, T.F. Miller, Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes. ACS Cent. Sci. 1 (2015) 198-205.
31.Y.T. Chen, Y.C. Chuang, J.H. Su, H.C. Yu, Y.W. Chen-Yang, High discharge capacity solid composite polymer electrolyte lithium battery. J. Power Sources 196 (2011) 2802-2809.
32.Y.W. Chen-Yang, H.C. Chen, F.J. Lin, C.C. Chen, Polyacrylonitrile electrolytes 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and -Al2O3. Solid State Ionics 150 (2002) 327-335.
33.A.K. Arof, N.E.A. Shuhaimi, S. Amirudin, M. Z. Kufian, H.J. Woo, M.A. Careem, Polyacrylo-nitrile–lithium bis(oxalato) borate polymer electrolyte for electrical double layer capacitors. Polym. Adv. Technol. 25 (2014) 265-272.
34.N. Voigt, L. van Wüllen, The mechanism of ionic transport in PAN-based solid polymer electrolytes, Solid State Ionics 208 (2012) 8-16.
35.C.A. Angell, Recent developments in fast ion transport in glassy and amorphous materials. Solid State Ionics 18&19 (1986) 72-88.
36.C. Berthier, W. Gorecki, M. Minier, M.E. Armand, J.M. Chabagno, P. Rigaud, Microscopic investigation of ion conductivity in alkali metal salts – polyethylene oxide adducts. Solid State Ionics, 11 (1983) 91-95.
37.Robert L. Cleland and Walter H. Stockmayer, An Intrinsic Viscosity-Molecular Weight Relation for Polyacrylonitrile, J. Polymer Sci. 17 (1955) 473-477.
38.P. F. Onyon, The molecular weight-viscosity relation for polyacrylonitrile, J. Polymer Sci. 22 (1956) 13-18.
39.G. Moad, E. Rizzardo, S.H. Thang, Polymer, 49 (2008) 1079.
40.M. Lansalot, C. Farcet, B. Charleux, J.P. Varion, R. Pirri, Macromolecules, 32 (1999) 7354.
41.G. Moad, E. Rizzardo, S.H. Thang, Aust J Chem, 58 (2005) 379.
42.L. Barner, T.P. Davis, M.H. Stenzel, C. Barner-Kowollik, Macromol Rapid Commun, 28 (2007) 539.
43.A.B. Lowe, C.L. McCormic, Prog Polym Sci, 32 (2007) 283.
44.J.B. McLeary, B. Klumperman, Soft Matter, 2 (2006) 45.
45.J. Yuan, R. Ma, Q. Gao, Y.F. Wang, S.Y. Cheng, X.L. Feng, J Appl Polym Sci, 89 (2003) 1017.
46.R.I. Kusuma, C.T. Lin, C.S. Chern, Polym Int, 64 (2015) 1389.
47.Zhang, L., et al., Vacancy-Contained Tetragonal Na3SbS4 Superionic Conductor. Adv Sci (Weinh), 2016. 3(10): p. 1600089.
48.D. Reber, R. Figi, R.S. Kühnel, C. Battaglia, Stability of aqueous electrolytes based on LiFSI and NaFSI, Electrochim. Acta 321 (2019) 134644.

無法下載圖示 全文公開日期 2025/02/10 (校內網路)
全文公開日期 2025/02/10 (校外網路)
全文公開日期 2025/02/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE