簡易檢索 / 詳目顯示

研究生: 賴奕羽
Yi-Yu Lai
論文名稱: 不同骨折固定策略與復健動作於肩關節大結節骨折治療之生物力學研究
Biomechanical Investigation of Various Fixation Strategies and Rehabilitation Activities for the Treatment of Greater Tuberosity Fracture using Finite Element Analysis
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
釋高上
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 大結節骨折鎖定式骨板螺絲固定位置復健動作有限元分析
外文關鍵詞: Greater tuberosity fracture, Screw fixation, Locking compression plate, Bamberg plate, Finite element analysis
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肩關節大結節骨折屬於肱骨近端骨折的一種,它是常見的肱骨損傷,常伴隨著肩關節脫位與旋轉肌群撕裂傷,治療較嚴重明顯的骨折可採用骨螺絲、鎖定式骨板、縫合式固定鉚釘、以及張力帶等方式固定骨折塊;雖然目前已有少數研究利用有限元素法來評估大結節骨折植入物之固定強度,但其數值模型的評估僅一外展動作。因此,本研究目的是以有限元素分析方法探討大結節骨折治療,分別以骨螺絲與鎖定式骨板固定後做復健動作時的生物力學性能。

本研究使用SolidWorks繪圖,由鎖骨、肩胛骨、肱骨、植入物組成,並將鎖骨隱藏以利後續分析;完成模型建構後將模型匯入電腦數值分析軟體ANSYS Workbench 19.2進行模擬分析,共有84個模型評估不同的手術治療策略之生物力學結果;本研究依據螺絲數目和固定方式分組進行穩定度與植入物應力評估,最後將所有結果進行正規化合併討論。

結果顯示,骨螺絲與鎖定式骨板在選擇螺絲固定位置時,螺絲排列呈倒三角形,其中兩支骨螺絲固定在骨折塊上,另一支骨螺絲則固定在肱骨上,使骨板橫跨骨折面,此方法使骨折處擁有較佳的穩定度以及較低的植入物破壞風險;螺絲呈倒三角排列但三支螺絲皆在骨折塊上,骨板並無橫跨骨折面,此固定方式使得骨板存在可有可無,甚至會有較糟的穩定度及應力表現,而非倒三角排列但骨板橫跨骨折面的固定方式使得骨折處的穩定度較差。這項研究可以提供外科醫師了解植入物的不同固定位置,其對於肱骨大結節骨折之生物力學結果與原理。


Greater tuberosity fracture of the humerus is a common injury, which is often accompanied by shoulder joint dislocation and rotator cuff tears. Patients with severe greater tuberosity fracture of humerus patterns more often underwent surgery. Multiple surgical strategies include the use of locking plates and screws, suture anchors, and tension bands. In previous studies, the finite element analysis (FEA) for fixation strategies of greater tuberosity fracture only considered shoulder abduction; however, considering only one shoulder posture was not enough to mimic the movement of multi-axial shoulder joint. Thus, the purpose of this study was to evaluate biomechanics on 2 treatments for 3 rehabilitation movements in 4 angles using three-dimensional FE models.

Seven types of implant fixation models, two types of screw fixation and five types of locking compression plate (LCP) fixation, were established using SolidWorks and ANSYS Workbench 19.2. In the boundary conditions, the scapula and the cartilage were fully constrained, the cartilage and the humerus were assumed to be no separation, the humerus and the implants were also assumed to be no separation, and the frictionless contact was applied between the interface of the greater tuberosity fracture. The force generated by the rotator cuff muscles in different postures were applied on humerus as the loading conditions. In post-processing, the bone fixation stability and the stress of implant were calculated and discussed.

The result showed that the screw insertion position had significant effect on fixation outcome. The screw insertion position arranged as a triangle and on both sides of the fracture line were more likely to provide better stability and less risk of implant failure. In contrast, the screw arrangements either without triangle position or only on one side of the fracture line had less stability or less functional outcome. This study could provide surgeons some useful information and biomechanics on the treatment of greater tuberosity fracture.

中文摘要 i ABSTRACT ii 誌謝 iii 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 動機與目的 1 1.2 上肢介紹 3 1.2.1 胸骨(Sternum) 4 1.2.2 鎖骨(Clavicle) 5 1.2.3 肩胛骨(Scapula) 6 1.2.4 肱骨(Humerus) 7 1.2.5 胸鎖關節(Sternoclavicular Joint) 7 1.2.6 肩胛關節(Scapulothoracic Joint) 9 1.2.7 肩鎖關節(Acromioclavicular Joint) 10 1.2.8 盂肱關節(Glenohumeral Joint) 12 1.2.9 肩胛骨節律(Scapulohumeral Rhythm) 13 1.2.10 旋轉肌群(Rotator Cuff) 14 1.2.10.1 肩胛下肌(Subscapularis) 14 1.2.10.2 棘上肌(Supraspinatus) 15 1.2.10.3 棘下肌(Infraspinatus) 16 1.2.10.4 小圓肌(Teres Minor) 17 1.3 治療大結節骨折方法 18 1.3.1 骨螺絲(Screw) 18 1.3.2 鎖定式骨板(Locking Plate) 19 1.4 術後復健動作評估 20 1.4.1 外展(Abduction) 20 1.4.2 屈曲(Flexion) 21 1.4.3 水平內收(Horizontal Flexion/Adduction) 21 1.5 文獻回顧 22 1.6 本文架構 28 第二章 材料與方法 29 2.1 模型建立 29 2.1.1 肩關節模型 29 2.1.1.1 外展動作模型 29 2.1.1.2 屈曲動作模型 31 2.1.1.3 水平內收動作模型 32 2.1.2 螺絲模型 33 2.1.3 鎖定式骨板模型 33 2.1.4 骨螺絲施打位置 34 2.2 有限元素分析 35 2.2.1 材料參數 36 2.2.2 網格元素 36 2.2.3 邊界條件設定 38 2.2.4 收斂性分析 42 2.2.5 數值模擬結果評估 43 第三章 結果 45 3.1 收斂性分析結果 45 3.2 完整模型位移結果 47 3.2.1 外展之完整模型位移結果 48 3.2.2 屈曲之完整模型位移結果 50 3.2.3 水平內收之完整模型位移結果 52 3.3 完整模型之應力結果 54 3.3.1 外展之完整模型骨螺絲應力結果 55 3.3.2 屈曲之完整模型骨螺絲應力結果 57 3.3.3 水平內收之完整模型骨螺絲應力結果 60 3.3.4 外展之完整模型鎖定式骨板應力結果 62 3.3.5 屈曲之完整模型鎖定式骨板應力結果 63 3.3.6 水平內收之完整模型鎖定式骨板應力結果 65 3.4 結果正規化(normalization) 66 第四章 討論 71 4.1 鎖定式骨板外型討論 71 4.2 有限元模型建構方法討論 71 4.3 大結節骨折固定之穩定度結果討論 73 4.4 大結節骨折固定之植入物應力結果討論 74 4.5 研究限制 75 第五章 結論與未來展望 77 5.1 結論 77 5.2 未來展望 78 參考文獻 79

1.Nikola Lekic, Nicole M. Montero, Richelle C. Takemoto, Roy I. Davidovitch, Kenneth A. Egol, Treatment of two-part proximal humerus fractures: intramedullary nail compared to locked plating. HSS J, 2012. 8(2): p. 86-91.
2.Tae-Hwan Yoon, Chong-Hyuk Choi, Yun-Rak Choi, Jong-Taek Oh, Yong-Min Chun,, Clinical outcomes of minimally invasive open reduction and internal fixation by screw and washer for displaced greater tuberosity fracture of the humerus. J Shoulder Elbow Surg, 2018. 27(6): p. e173-e177.
3.Christian Bahrs, Erich Lingenfelter, Franziska Fischer, Eduard M. Walters, Michael Schnabel, Mechanism of injury and morphology of the greater tuberosity fracture. J Shoulder Elbow Surg, 2006. 15(2): p. 140-7.
4.Marco Zanetti, Dominik Weishaupt, Bernhard Jost, Christian Gerber, Juerg Hodler, MR imaging for traumatic tears of the rotator cuff_high prevalence of greater tuberosity fractures and subscapularis tendon tears. 1999.
5.V. Braunstein, E. Wiedemann, W. Plitz, O.J. Muensterer, W. Mutschler, S. Hinterwimmer, Operative treatment of greater tuberosity fractures of the humerus--a biomechanical analysis. Clin Biomech (Bristol, Avon), 2007. 22(6): p. 652-7.
6.Stefan Mattyasovszky, Klaus J Burkhart, Christopher Ahlers, Dirk Proschek, Seven-Oliver Dietz, Inma Becker, Stephan Muller-Haberstock, Lars P Muller, Pol M Rommens, Isolated fractures of the greater tuberosity of the proximal humerus: a long-term retrospective study of 30 patients. Acta Orthop, 2011. 82(6): p. 714-20.
7.Bradley C. Carofino, Seth S. Leopold, Classifications in brief: the Neer classification for proximal humerus fractures. Clin Orthop Relat Res, 2013. 471(1): p. 39-43.
8.Tae-Soo Park, Il-Yong Choi, Young-Ho Kim, Myung-Ryool Park, Joeng-Hwa Shon, Sun-Il Kim, , A new suggestion for the treatment of minimally displaced fractures of the greater tuberosity of the proximal humerus. Bulletin (Hospital for Joint Diseases (New York, NY)), 1997. 56(3): p. 171-176.
9.Paul Jackson Mansfield, Donald A. Neumann, Structure and Function of the Shoulder Complex. Essentials of Kinesiology for the Physical Therapist Assistant, 2019: p. 50-90.
10.小小整理網站. 醫學(Medcine)相關資訊. Available from: https://smallcollation.blogspot.com/#gsc.tab=0.
11.Paula M. Ludewig, Vandana Phadke, Jonathan P. Braman, Daniel R. Hassett, Cort J. Cieminski, Robert F. LaPrade, Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am, 2009. 91(2): p. 378-89.
12.James Wickham, Tania Pizzari, Katie Stansfeld, Amanda Burnside, Lyn Watson, Quantifying 'normal' shoulder muscle activity during abduction. J Electromyogr Kinesiol, 2010. 20(2): p. 212-22.
13.Longxiang Shen, Wei Zhang, Qiuke Wang, Yunfeng Chen, Establishment of a three-dimensional finite element model and biomechanical analysis of three different internal fixation methods for humeral greater tuberosity fracture. International Journal of Clinical and Experimental Medicine (IJCEM), 2018. 13.
14.林芳鈺, Biomechanical Evaluation of Treatment for Vertically Unstable Pelvic Fractures and Development of Automated Spring Generator for the Modeling of Human Soft Tissue. 2019.
15.Peter J. Millett, Reg B. Wilcox III, James D. O’Holleran, Jon J. P. Warner, Rehabilitation of the Rotator Cuff: An Evaluation-Based Approach. Journal of the American Academy of Orthopaedic Surgeons, 2006. 14.
16.Terrance A. Sgroi, Michelle Cilenti, Rotator cuff repair: post-operative rehabilitation concepts. Curr Rev Musculoskelet Med, 2018. 11(1): p. 86-91.
17.復健部. 奇美衛教資訊網-關節運動衛教. Available from: https://www.chimei.org.tw/main/cmh_department/59012/info/5100/55100008.html.
18.S Gupta, F C T van der Helm, J C Sterk, F van Keulen, B L Kaptein, Development and experimental validation of a three-dimensional finite element model of the human scapula. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2004. 218(2): p. 127-142.
19.Volker Schoffl, Dominik Popp, Wolf Strecker, A simple and effective implant for displaced fractures of the greater tuberosity: the "Bamberg" plate. Arch Orthop Trauma Surg, 2011. 131(4): p. 509-12.
20.Cinzia Gaudelli, Jeremie Menard, Jennifer Mutch, G-Yves Laflamme, Yvan Petit, Dominique M. Rouleau, Locking plate fixation provides superior fixation of humerus split type greater tuberosity fractures than tension bands and double row suture bridges. Clin Biomech (Bristol, Avon), 2014. 29(9): p. 1003-8.
21.litos, Proximal Humerus Fractures_Evaluation and Management in the Elderly Patient.
22.Alan S. Curtis, Kelton M. Burbank, John J. Tierney, Arnold D. Scheller, Andrew R. Curran, The insertional footprint of the rotator cuff: an anatomic study. Arthroscopy, 2006. 22(6): p. 609 e1.
23.Wen Wu, Peter V.S. Lee, Agam L. Bryant, Mary Galea, David C. Ackland, Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function. J Biomech, 2016. 49(15): p. 3626-3634.
24.Aristotelis Kaisidis, Panagiotis G. Pantos, Dimitrios Bochlos, Horst Lindner, Biomechanical analysis of the fixation strength of a novel plate for greater tuberosity fractures. The open orthopaedics journal, 2018. 12: p. 218.
25.台美檢驗科技有限公司. 植入性試驗介紹. Available from: https://www.superlab.com.tw/implantation_test/.
26.mathematics, underground. Triangles are the strongest shape. Available from: https://undergroundmathematics.org/thinking-about-geometry/triangles-are-the-strongest-shape.

無法下載圖示 全文公開日期 2025/06/30 (校內網路)
全文公開日期 2025/06/30 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE