簡易檢索 / 詳目顯示

研究生: 黃建蒲
Jian-pu Huang
論文名稱: 噴霧熱解法製備釤摻雜二氧化鈰粉體其形貌與導電性研究
Study on Morphology and Conductivity for Sm-doped Ceria by Spray Pyrolysis
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
顏怡文
Yee-Wen Yen
潘同明
Tung-Ming Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 109
中文關鍵詞: 噴霧熱解法二氧化鈰顆粒形貌固態氧化物燃料電池
外文關鍵詞: spray pyrolysis, ceria, morphology, solid oxide fuel cell
相關次數: 點閱:461下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二氧化鈰(CeO2)陶瓷材料在不同領域具有廣泛的應用性。本實驗將探討CeO2在固態氧化物燃料電池(Solid oxide fuel cell, SOFC)中電解質材料的應用。CeO2屬於螢石結構,具有良好的氧離子傳導能力,在SOFC中主要應用在電解質(Electrolyte)材料。而為了得到高密度的電解質材料,CeO2的形貌必須為實心球狀,在燒結過程中才能得到較高的密度。因此對於電解質材料的應用,CeO2形貌的操控是必須且重要的。
本實驗將由先驅物(Precursor)的特性探討不同形貌顆粒的成型機制,並藉此機制操控或製備具有新形貌的CeO2顆粒,所使用的製程為噴霧熱解法(Spray pyrolysis, SP)。先驅物的特性主要以熱重分析(Thermogravimetric analysis, TGA)及熱差分析(Differential thermal analysis, DTA)量測。而CeO2的顆粒形貌及表面結構分別以穿透式電子顯微鏡(Transmission electron microscopy, TEM)和掃描式電子顯微鏡(Scanning electron microscopy, SEM)鑑定。實驗結果顯示利用單無機鹽類先驅物醋酸鈰(CeA)、硝酸鈰(CeN)及硝酸鈰銨(CeAN)可分別得到中空(type II)或碗狀(type III)、多孔狀(type IV)及實心球狀(type I)結構的CeO2粉體。雙無機鹽類先驅物50CeA50CeN、50CeA50CeAN及50CeN50CeAN可得到實心球狀(type I)、隕石狀(type V)及鑲嵌狀結構(type VI)的CeO2粉體,其中利用先驅物硝酸鈰銨製備具有實心球狀的CeO2粉體可被應用在SOFC的電解質材料。
利用先驅物硝酸鈰銨與硝酸釤經由SP合成摻雜釤之CeO2粉體(Sm-doped ceria, SDC),利用XRD鑑定粉體的結晶相,並透過晶格常數的計算判斷Sm在CeO2中的固溶量,實驗結果顯示當摻雜量到達
60at%時並無第二相產生。將不同比例的SDC粉體利用網印的技術印在具有白金線路之氧化鋁板上,透過500oC、2h將膠體去除並用1200oC、2h燒結緻密化後形成厚度約10-20μm的厚膜,在不同溫度900oC、800oC及700oC下測量導電率,導電率隨著溫度上升而上升,在摻雜量為20at%時會有最高的導電率。


Ceria (CeO2) materials are widely used in various applications. This study investigates the solid oxide fuel cell (SOFC) applications for CeO2 electrolytes. CeO2 has a fluorite crystallographic structure and it exhibits the excellent oxygen ion conductivity in SOFC electrolytes. In order to obtain the dense SOFC electrolytes with fewer pores, the morphology of solid spherical for CeO2 particles have benefits for sintering process. Manipulation of particle morphology is urgent and important for SOFC electrolytes.
This study synthesizes various morphological CeO2 particles from various precursors using spray pyrolysis (SP), and investigates the relativant formation mechanisms for various precursor characteristics. In order to examine the mechanisms, the decomposition behaviors of the precursors were examined by thermogravimetric analysis (TGA) and differential thermal analyzer (DTA). The geometries and surface morphologies of the ceria particles were examined by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The experimental results show that the particle morphologies of hollow (type II) or bowl-like (type III), porous (type IV) and solid spherical (type I) structures were obtained using the single-salts of cerium acetate (CeA), cerium nitrate (CeN) and ammonium cerium nitrate (CeAN), respectively. The dual-salt system including 50CeA50CeN, 50CeA50CeAN and 50CeN50CeAN was applied to produce various morphological particles: solid spherical (type I), meteorite-like (type V) and embedded (type VI) structures. Furthermore, the solid spherical particles prepared from CeAN have been used in SOFC electrolytes.
The precursors of CeAN and samarium nitrate were used to produce Sm-doped ceria (SDC) particles using SP. The crystallographic phase and lattice parameters of SDC particles were examined by X-ray diffraction (XRD), and only the fluorite phase exists in SDC with the doping level from 0 to 60at%. SDC powders with various compositions were screen printed on the alumina substrates with platinum wires. The formation of thick films with 10-20μm thickness undergoes the gel decomposition at 500oC for 5h and sintering at 1200oC for 2h. The conductivities were measured at 900oC, 800oC and 700oC. The result shows that the conductivities increase with the increasing of temperature, and the highest conductivity value appears at 20at% SDC.

摘要 I Abstract III 目錄 VI 圖目錄 X 表目錄 XIV 第一章、緒論 1 第二章、文獻回顧 3 2.1 CeO2之性質及應用 3 2.1.1物理性質 3 2.1.2化學缺陷性質 5 2.2 CeO2製備方法 5 2.3噴霧裂解法(Spray pyrolysis) 8 2.3.1噴霧裂解法簡介 8 2.3.2顆粒成型機制 10 2.4靜電沉積技術 12 2.5不同先驅物對形貌之影響 13 2.6燃料電池簡介 15 2.7燃料電池之分類 17 2.8固態氧化物燃料電池之特點 18 2.8.1固態氧化物燃料電池之工作原理 19 2.8.2固態氧化物燃料電池組成元件 21 2.8.2.1陰極(Cathode) 21 2.8.2.2陽極(Anode) 22 2.8.2.3連接層(Interconnection) 23 2.8.2.4電解質(Electrolyte) 24 2.8.3電解質材料的選用及比較 25 2.8.3.1螢石結構(Fluorite structure CaF2) 25 2.8.3.2鈣鈦礦結構(Pervoskite structure ABO3) 30 2.8.4固態氧化物燃料電池型態 31 2.8.5固態氧化物燃料電池之未來發展 33 2.9電解質材料之導電行為 34 2.9.1溫度之影響 34 2.9.2氧分壓之影響 35 第三章、實驗目的與方法 36 3.1 實驗設計與目的 36 3.2 試片之製備 38 3.2.1 粉體之製備與收集 38 3.3 粉體及燒結成型之試片特性量測 40 3.3.1 比表面積量測 40 3.3.2 場發射掃描式電子顯微鏡表面形貌分析 41 3.3.3 穿透式電子顯微鏡內部形貌分析及粒徑量測 41 3.3.4 SDC粉體摻雜量計算 42 3.3.5 網印及燒結 42 3.4 電解質之電性量測 44 3.4.1電阻值(Resistance)之量測 44 3.4.2導電率(Conductivity)之計算 44 第四章、結果與討論 46 4.1 先驅物之特性分析 46 4.1.1先驅物之熱重分析(Thermogravimetric analysis, TGA)及熱差分析(Differential thermal analysis, DTA) 46 4.1.2 先驅物溶解度 53 4.2 噴霧熱解之粉末性質分析 54 4.2.1 單無機鹽類先驅物所製備的粉末FESEM表面形貌分析 54 4.2.2 單無機鹽類先驅物所製備的粉末TEM顆粒形貌分析 56 4.2.3 單無機鹽類先驅物所製備的粉末DB-FIB顆粒內部形貌分析 59 4.2.4 單無機鹽類先驅物製備的粉體粒徑分布及形貌分析 62 4.2.5 單無機鹽類先驅物所製備的粉體成型機制 64 4.2.6 雙無機鹽類先驅物(Complex precursor)所製備的粉末FESEM表面形貌分析 66 4.2.7 雙無機鹽類先驅物所製備的粉末TEM顆粒形貌分析 67 4.2.8 雙無機鹽類先驅物所製備的粉末DB-FIB顆粒內部形貌分析 70 4.2.9 雙無機鹽類先驅物所製備的粉體粒徑分布及形貌分析 72 4.2.10 雙無機鹽類先驅物所製備的粉末其顆粒成型機制 74 4.2.11 BET表面積分析 76 4.3 SDC粉體性質分析 78 4.3.1 XRD結晶相分析 78 4.3.2 摻雜量之計算 80 4.4電性量測 81 4.4.1 厚膜表面形貌 81 4.4.2電阻率(Resistivity) 83 4.4.3導電率(Conductivity) 84 第五章、結論 86

[1] U. Hennings, R. Reimert, Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas, Applied Catalysis A: General 325 (1) (2007) 41-49.
[2] A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials, Catalysis Reviews 38 (4) (1996) 439-520.
[3] G. Chen, F. Zhu, X. Sun, S. Sun, R. Chen, Benign synthesis of ceria hollow nanocrystals by a template-free method, CrystEngComm 13 (8) (2011) 2904-2908.
[4] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1-2) (1996) 1-16.
[5] C.-Y. Chen, C.-L. Liu, Doped ceria powders prepared by spray pyrolysis for gas sensing applications, Ceramics International 37 (7) (2011) 2353-2358.
[6] B. Park, H. Lee, K. Park, H. Kim, H. Jeong, Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry, Journal of Materials Processing Technology 203 (1–3) (2008) 287-292.
[7] C. Peng, Y. Wang, K. Jiang, B.Q. Bin, H.W. Liang, J. Feng, J. Meng, Study on the structure change and oxygen vacation shift for Ce1-xSmxO2-y solid solution, Journal of Alloys and Compounds 349 (1-2) (2003) 273-278.
[8] C. Ying-Yu, R. Schmid, Y.A. Chang, Calculation of the equilibrium phase diagrams and the spinodally decomposed structures of the Fe---Cu---Ni system, Acta Metallurgica 33 (8) (1985) 1369-1380.
[9] A. Kelly, K.M. Knowles, Front Matter, in: Crystallography and Crystal Defects, John Wiley & Sons, Ltd, 2012, pp. i-xiv.
[10] M. Hirano, T. Miwa, M. Inagaki, Effect of the presence of ammonium peroxodisulfate on the direct precipitation of ceria and ceria–circonia solid solutions from acidic aqueous solutions, Journal of the American Ceramic Society 84 (8) (2001) 1728-1732.
[11] K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara, T. Adschiri, Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis, Nano Letters 7 (2) (2007) 421-425.
[12] S. Srivatsan, J.L. Keith, T.D. Reza, M.P. Paranthaman, Reverse micellar synthesis of cerium oxide nanoparticles, Nanotechnology 16 (9) (2005) 1960.
[13] T. Masui, K. Fujiwara, K.-i. Machida, G.-y. Adachi, T. Sakata, H. Mori, Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles, Chemistry of Materials 9 (10) (1997) 2197-2204.
[14] L.L. Hench, J.K. West, The sol-gel process, Chemical Reviews 90 (1) (1990) 33-72.
[15] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society 76 (11) (1993) 2707-2726.
[16] T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, H.D. Glicksman, Solid silver particle production by spray pyrolysis, Journal of Aerosol Science 24 (3) (1993) 383-392.
[17] T.C. Pluym, T.T. Kodas, L.-M. Wang, H.D. Glicksman, Silver-palladium alloy particle production by spray pyrolysis., Journal of Materials Research 10 (1995) 1661-1673.
[18] P.S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics 59 (3) (1999) 185-198
[19] C. Naşcu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Spray pyrolysis deposition of CuS thin films, Materials Letters 32 (2–3) (1997) 73-77.
[20] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science 22, Supplement 1 (0) (1991) S7-S10.
[21] C.F. Clement, I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmospheric Environment 33 (3) (1999) 489-499.
[22] C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, H.M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International 34 (2) (2008) 409-416.
[23] H. Kato, T. Kudo, H. Naito, H. Yugami, Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC, Solid State Ionics 159 (3-4) (2003) 217-222.
[24] H.F. Kraemer, H.F. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial & Engineering Chemistry 47 (12) (1955) 2426-2434.
[25] S. Liu, P.K. Dasgupta, Automated system for chemical analysis of airborne particles based on corona-free electrostatic collection, Analytical Chemistry 68 (20) (1996) 3638-3644.
[26] H.S. Kang, Y.C. Kang, H.Y. Koo, S.H. Ju, D.Y. Kim, S.K. Hong, J.R. Sohn, K.Y. Jung, S.B. Park, Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution, Materials Science and Engineering: B 127 (2-3) (2006) 99-104.
[27] S.J. Shih, K.B. Borisenko, L.J. Liu, C.Y. Chen, Multiporous ceria nanoparticles prepared by spray pyrolysis, Journal of Nanoparticle Research 12 (5) (2010) 1553-1559.
[28] C.-Y. Chen, T.-K. Tseng, C.-Y. Tsay, C.-K. Lin, Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis, Journal of Materials Engineering and Performance 17 (1) (2008) 20-24.
[29] H.C. Jang, D.S. Jung, J.H. Kim, Y.C. Kang, Y.H. Cho, J.-H. Lee, Characteristics of samaria-doped ceria nanoparticles prepared by spray pyrolysis, Ceramics International 36 (2) (2010) 465-471.
[30] U.S.D.o. Energy, Fuel Cell Handbook by EG&G Technical Service Inc. , 7thEd., (2004).
[31] M. Dokiya, SOFC system and technology, Solid State Ionics 152–153 (0) (2002) 383-392.
[32] E. Ivers-Tiffee, A. Weber, D. Herbstritt, Materials and technologies for SOFC-components, Journal of the European Ceramic Society 21 (10–11) (2001) 1805-1811.
[33] S. Kawatsu, Advanced PEFC development for fuel cell powered vehicles, J. Power Sources 71 (1–2) (1998) 150-155.
[34] N. Kim, B.-H. Kim, D. Lee, Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte, J. Power Sources 90 (2) (2000) 139-143.
[35] S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review, Ceramics International 22 (3) (1996) 257-265.
[36] N.Q. Minh, Ceramic fuel cells, Journal of the American Ceramic Society 76 (3) (1993) 563-588.
[37] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (1–4) (2000) 305-313.
[38] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (3–4) (1991) 207-212.
[39] M. Godickemeier, K. Sasaki, L.J. Gauckler, I. Riess, Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes, Solid State Ionics 86–88, Part 2 (0) (1996) 691-701.
[40] S.J. Skinner, Recent advances in perovskite-type materials for SOFC cathodes, Fuel Cells Bulletin 4 (33) (2001) 6-12.
[41] K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Fuel flexibility in power generation by solid oxide fuel cells, Solid State Ionics 152–153 (0) (2002) 411-416.
[42] C.-L. Chu, J.-Y. Wang, S. Lee, Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering, International Journal of Hydrogen Energy 33 (10) (2008) 2536-2546.
[43] J.W. Fergus, Metallic interconnects for solid oxide fuel cells, Materials Science and Engineering: A 397 (1–2) (2005) 271-283.
[44] S. Linderoth, P.V. Hendriksen, M. Mogensen, N. Langvad, Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks, Journal of Materials Science 31 (19) (1996) 5077-5082.
[45] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, Electrolytes for solid-oxide fuel cells., MRS Bulletin 30 (2005) 591-595.
[46] J.W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources 162 (1) (2006) 30-40.
[47] B. Zhu, Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects, International Journal of Energy Research 33 (13) (2009) 1126-1137.
[48] B.C.H. Steele, Oxygen ion conductors and their technological applications, Materials Science and Engineering: B 13 (2) (1992) 79-87.
[49] E.D. Wachsman, G.R. Ball, N. Jiang, D.A. Stevenson, Structural and defect studies in solid oxide electrolytes, Solid State Ionics 52 (1–3) (1992) 213-218.
[50] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics 52 (1–3) (1992) 165-172.
[51] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Journal of Applied Electrochemistry 18 (4) (1988) 527-531.
[52] D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Optimization of ionic conductivity in doped ceria, Proceedings of the National Academy of Sciences of the United States of America 103 (10) (2006) 3518-3521.
[53] G.B. Jung, T.J. Huang, M.H. Huang, C.L. Chang, Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method, Journal of Materials Science 36 (24) (2001) 5839-5844.
[54] T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a new oxide ionic conductor, Journal of the American Chemical Society 116 (9) (1994) 3801-3803.
[55] N. Ramadass, ABO3-type oxides—their structure and properties—a bird's eye view, Materials Science and Engineering 36 (2) (1978) 231-239.
[56] H. Itoh, M. Mori, N. Mori, T. Abe, Production cost estimation of solid oxide fuel cells, J. Power Sources 49 (1–3) (1994) 315-332.
[57] T.L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang, Material research for planar SOFC stack, Solid State Ionics 148 (3–4) (2002) 513-519.
[58] H. Kabs, Advanced SOFC Technology and its Realization at Siemens Westinghouse,, Bilateral Seminars 33, Materials and processes for advanced technology: materials for energy systems, Egyptian–German Workshop, Cairo, 7–9 April 2002, eds. D. Stover and M. Bram, Forschungszen Julich, Julich, Germany, 91–101, 2002.
[59] A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews 6 (5) (2002) 433-455.
[60] G.B. Jung, T.J. Huang, C.L. Chang, Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte, Journal of Solid State Electrochemistry 6 (4) (2002) 225-230.
[61] T. Arii, A. Kishi, M. Ogawa, Y. Sawada, Thermal decomposition of cerium(III) acetate hydrate by a three-dimensional thermal analysis, Analytical Sciences 17 (7) (2001) 875-880.
[62] F. Bondioli, A. Bonamartini Corradi, C. Leonelli, T. Manfredini, Nanosized CeO2 powders obtained by flux method, Materials Research Bulletin 34 (14–15) (1999) 2159-2166.
[63] G.A.M. Hussein, D.J. Buttrey, P. DeSanto Jr, A.A. Abd-Elgaber, H. Roshdy, A.Y.Z. Myhoub, Formation and characterization of samarium oxide generated from different precursors, Thermochimica Acta 402 (1–2) (2003) 27-36.
[64] S.-Y. Yang, S.-G. Kim, Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis, Powder Technology 146 (3) (2004) 185-192.
[65] Z.L. Wang, J.M. Petroski, T.C. Green, M.A. El-Sayed, Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals, The Journal of Physical Chemistry B 102 (32) (1998) 6145-6151.

QR CODE