簡易檢索 / 詳目顯示

研究生: 周俊良
Chun-Liang Chou
論文名稱: 以大鼠急性肺損傷模式評估包覆厚朴酚微奈米顆粒之抗發炎能力
Evaluating the Anti-inflammatory Ability of Microparticles Containing Magnolol Loaded Nanoparticles on Lipopolysaccharide-induced Acute Lung Injury Rats
指導教授: 高震宇
Chen-Yu Kao
口試委員: 蔡協致
Hsieh-Chih Tsai
曾靖孋
Ching-Li Tseng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 145
中文關鍵詞: 急性肺損傷厚朴酚抗發炎聚縮酮微奈米顆粒
外文關鍵詞: acute lung injury, magnolol, anti-inflammatory, polyketal, nanoparticles in microparticles
相關次數: 點閱:478下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

急性肺損傷是死亡率極高之肺部疾病,於病理上會出現發炎性細胞浸潤、肺泡塌陷之情形,其病理機轉主要是由於活化肺泡內之嗜中性細胞及巨噬細胞,釋放出發炎物質所導致。而厚朴酚為具有抗發炎功效之中草藥萃取物,但由於其極為疏水、溶解度差及懸浮特性不佳,因此須藉由藥物載體來改善其疏水特性,提升厚朴酚之生物可利用率。本研究主要以生物可降解高分子聚縮酮(PCADK、PK3)及聚乳酸-甘醇酸(PLGA)作為藥物載體,製備出適合用於肺部傳輸之微米及微奈米顆粒,藉由顆粒特性分析、體外釋放測試、細胞及動物抗發炎能力測試,評估微米及微奈米顆粒對於治療急性肺損傷之效果。
研究結果顯示,包覆厚朴酚之微米及微奈米顆粒之粒徑介於2.60 – 3.02微米;微米顆粒之藥物藥物包埋率介於52.45 – 70.96%,而微奈米顆粒介於16.22 – 28.70%,體外釋放測試顯示微米及微奈米顆粒所包覆之奈米顆粒皆有穩定釋放厚朴酚之效果;細胞實驗結果顯示,微米及微奈米顆粒皆有降低發炎因子NO之效果;動物實驗結果(組織病理切片、白血球計數、蛋白質濃度、過氧化物酶活性及細胞激素(TNF-alpha濃度)顯示,包覆厚朴酚之PCADK微米顆粒及PLGA微奈米顆粒之抗發炎效果最好。


Acute lung injury (ALI) is one of the leading causes of death in pulmonary disease. It appears the conditions such as inflammatory cell infiltration and the collapse of alveolar. Magnolol, a Chinese herbal extract, exhibit great anti-inflammatory ability in vitro and has great potential in treating ALI. However, the clinical success of magnolol has been hindered due to the poor solubility and poor suspension property of magnolol. Therefore, there is a great need to develop drug carriers to improve the bioavailability of magnolol by enhacing its suspension property. In this study, different biodegradable microparticles and spray-dried microparticles containing biodegradable nanoparticles were developed to enhance the pulmonary delivery efficiency of magnolol.
The results showed that the particle sizes of microparticles and microparticles containing nanoparticles ranged from 2.60 to 3.02 micrometer. The encapsulation efficiency of the magnolol loaded microparticles ranged from 52.45 to 70.96%, and the encapsulation efficiency of microparticles containing nanoparticles ranged from 16.22 to 28.70%. The in vitro release data showed that the magnolol loaded microparticles and nanoparticles could continuously release magnolol. The in vitro cell experiments showed that both magnolol loaded microparticles and microparticles containing nanoparticles could inhibit more NO production from LPS-activated raw 264.7 cells than same amount of free magnolol. More importantly, the in vivo experiment showed that magnolol loaded PCADK microparticles and microparticles containing PLGA nanoparticles have better inhibitory effects on white blood cell counts, protein concentration, MPO activity and TNF-alpha concentration from LPS-activated SD rats.

論文摘要 ABSTRACT 誌 謝 圖目錄 表目錄 第一章 緒論 第二章 文獻回顧 2.1 急性肺損傷 (Acute lung injury, ALI) 2.1.1 急性肺損傷之病因 2.1.2 急性肺損傷之病理機轉 2.1.3 急性肺損傷治療方式 2.2 厚朴酚 (Magnolol) 2.3 藥物傳輸系統 2.3.1 高分子材料載藥傳輸系統 2.3.2 奈米藥物傳輸載體 2.3.3 肺部傳輸系統 2.3.4 肺部傳輸之吸入器 2.4 藥物傳輸載體製備 2.4.1 乳化法 2.4.2 噴霧乾燥 2.4.3 奈米沉澱法 2.4.4 電噴灑技術 2.5 聚乳酸-甘醇酸 2.6 Polyketal聚縮酮 2.7 醣類包覆 2.7.1 甘露醇 2.7.2 乳糖 第三章 研究設計與材料方法 3.1 研究設計 3.1.1 實驗設計 3.1.2 實驗架構 3.2 實驗藥品、試劑與儀器設備 3.2.1 合成製備之實驗藥品試劑 3.2.2 細胞培養用之藥品試劑 3.2.3 動物實驗用之藥品試劑 3.2.4 實驗分析儀器設備 3.3 Polyketal共聚物合成 3.3.1 PCADK共聚物合成 3.3.2 PK3共聚物合成 3.4 微米顆粒載體(Microparticles)製備 3.4.1 空白微米顆粒製備 3.4.2 包覆厚朴酚微米顆粒製備 3.4.3 包覆螢光染劑DiI微米顆粒製備 3.5 奈米顆粒載體(Nanoparticles)製備 3.5.1 空白奈米顆粒製備 3.5.2 包覆厚朴酚奈米顆粒製備 3.5.3 包覆螢光染劑DiI奈米顆粒製備 3.6 微奈米顆粒載體製備 3.7 顆粒載體特性分析 3.7.1 粒徑分析 3.7.2 形態觀察 3.7.3 顆粒藥物包覆率分析 3.7.4 顆粒體外釋放試驗 3.8 細胞培養 3.8.1 細胞培養條件及培養液配製 3.8.2 凍存細胞活化 3.8.3 細胞培養液更換 3.8.4 細胞繼代培養 3.8.5 細胞計數 3.8.6 細胞凍存 3.8.7 細胞毒性MTT分析 3.8.8 Magnolol-Particles抑制細胞一氧化氮產物生成分析 3.9 動物實驗 3.9.1 實驗動物組別 3.9.2 內毒素誘導肺損傷之動物模式 3.9.3 內毒素誘導肺損傷之測定 3.9.4 統計學分析 (Statistical Analysis) 第四章 結果 4.1 藥物顆粒載體性質分析 4.1.1 微米顆粒粒徑分析 4.1.2 噴霧乾燥微奈米顆粒產率評估 4.1.3 微米顆粒形態分析 4.1.4 顆粒包覆效率評估 4.1.5 包覆厚朴酚顆粒體外釋放效率評估 4.1.6 顆粒懸浮性評估 4.2 細胞實驗 4.2.1 細胞毒性分析 4.2.2 抑制細胞一氧化氮產物生成之分析 4.3 動物實驗 4.3.1 顆粒在肺組織之均勻度分析 4.3.2 組織病理切片與白血球計數分析 4.3.3 蛋白質濃度分析 4.3.4 過氧化物酶活性分析 4.3.5 細胞激素(TNF-alpha)濃度分析 第五章 討論 5.1 藥物顆粒載體性質分析 5.2 細胞實驗評估 5.3 動物實驗評估 第六章 結論 參考文獻 附錄

[1] Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Internal medicine. 2009;48:621-30.
[2] Nieuwenhuizen L, de Groot PG, Grutters JC, Biesma DH. A review of pulmonary coagulopathy in acute lung injury, acute respiratory distress syndrome and pneumonia. European journal of haematology. 2009;82:413-25.
[3] Choi JH, Ha J, Park JH, Lee JY, Lee YS, Park HJ, et al. Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols. Japanese journal of cancer research : Gann. 2002;93:1327-33.
[4] Kang JS, Lee KH, Han MH, Lee H, Ahn JM, Han SB, et al. Antiinflammatory activity of methanol extract isolated from stem bark of Magnolia kobus. Phytotherapy research : PTR. 2008;22:883-8.
[5] Kong CW, Tsai K, Chin JH, Chan WL, Hong CY. Magnolol attenuates peroxidative damage and improves survival of rats with sepsis. Shock. 2000;13:24-8.
[6] Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacology & therapeutics. 2011;130:157-76.
[7] Gou ML, Dai M, Li XY, Wang XH, Gong CY, Xie Y, et al. Preparation and characterization of honokiol nanoparticles. Journal of materials science Materials in medicine. 2008;19:2605-8.
[8] Fiore VF, Lofton MC, Roser-Page S, Yang SC, Roman J, Murthy N, et al. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials. 2010;31:810-7.
[9] Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S, et al. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature materials. 2008;7:863-8.
[10] Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67-74.
[11] Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Critical reviews in therapeutic drug carrier systems. 1989;6:193-210.
[12] Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553-64.
[13] Ware LB, Matthay MA. The acute respiratory distress syndrome. The New England journal of medicine. 2000;342:1334-49.
[14] Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American journal of respiratory cell and molecular biology. 2005;33:319-27.
[15] Proudfoot AG, McAuley DF, Griffiths MJD, Hind M. Human models of acute lung injury. Dis Model Mech. 2011;4:145-53.
[16] Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. American journal of respiratory and critical care medicine. 1999;160:1843-50.
[17] Anzueto A, Baughman RP, Guntupalli KK, Weg JG, Wiedemann HP, Raventos AA, et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. The New England journal of medicine. 1996;334:1417-21.
[18] Thomassen MJ, Antal JM, Barna BP, Divis LT, Meeker DP, Wiedemann HP. Surfactant downregulates synthesis of DNA and inflammatory mediators in normal human lung fibroblasts. The American journal of physiology. 1996;270:L159-63.
[19] Lundin S, Westfelt UN, Stenqvist O, Blomqvist H, Lindh A, Berggren L, et al. Response to nitric oxide inhalation in early acute lung injury. Intensive care medicine. 1996;22:728-34.
[20] Meyer J, Theilmeier G, Van Aken H, Bone HG, Busse H, Waurick R, et al. Inhaled prostaglandin E1 for treatment of acute lung injury in severe multiple organ failure. Anesthesia and analgesia. 1998;86:753-8.
[21] Allison AC, Cacabelos R, Lombardi VRM, Alvarez XA, Vigo C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuro-Psychoph. 2001;25:1341-57.
[22] Cepkova M, Matthay MA. Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. Journal of intensive care medicine. 2006;21:119-43.
[23] McIntyre RC, Jr., Pulido EJ, Bensard DD, Shames BD, Abraham E. Thirty years of clinical trials in acute respiratory distress syndrome. Critical care medicine. 2000;28:3314-31.
[24] Seo JU, Kim MH, Kim HM, Jeong HJ. Anticancer potential of magnolol for lung cancer treatment. Archives of pharmacal research. 2011;34:625-33.
[25] Huang SH, Chen Y, Tung PY, Wu JC, Chen KH, Wu JM, et al. Mechanisms for the magnolol-induced cell death of CGTH W-2 thyroid carcinoma cells. Journal of cellular biochemistry. 2007;101:1011-22.
[26] Ikai T, Akao Y, Nakagawa Y, Ohguchi K, Sakai Y, Nozawa Y. Magnolol-induced apoptosis is mediated via the intrinsic pathway with release of AIF from mitochondria in U937 cells. Biol Pharm Bull. 2006;29:2498-501.
[27] Lin SY, Chang YT, Liu JD, Yu CH, Ho YS, Lee YH, et al. Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells. Molecular carcinogenesis. 2001;32:73-83.
[28] Yang SE, Hsieh MT, Tsai TH, Hsu SL. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. British journal of pharmacology. 2003;138:193-201.
[29] You QJ, Li MQ, Jiao GQ. Magnolol Induces Apoptosis via Activation of Both Mitochondrial and Death Receptor Pathways in A375-S2 Cells. Archives of pharmacal research. 2009;32:1789-94.
[30] Wang JP, Hsu MF, Raung SL, Chen CC, Kuo JS, Teng CM. Anti-inflammatory and analgesic effects of magnolol. Naunyn-Schmiedeberg's archives of pharmacology. 1992;346:707-12.
[31] Hsu MF, Lu MC, Tsao LT, Kuan YH, Chen CC, Wang JP. Mechanisms of the influence of magnolol on eicosanoid metabolism in neutrophils. Biochemical pharmacology. 2004;67:831-40.
[32] Homma M, Minami M, Taniguchi C, Oka K, Morita S, Niitsuma T, et al. Inhibitory effects of lignans and flavonoids in saiboku-to, a herbal medicine for bronchial asthma, on the release of leukotrienes from human polymorphonuclear leukocytes. Planta medica. 2000;66:88-91.
[33] Hamasaki Y, Kobayashi I, Zaitu M, Tsuji K, Kita M, Hayasaki R, et al. Magnolol inhibits leukotriene synthesis in rat basophilic leukemia-2H3 cells. Planta medica. 1999;65:222-6.
[34] Han SJ, Bae EA, Trinh HT, Yang JH, Youn UJ, Bae KH, et al. Magnolol and honokiol: inhibitors against mouse passive cutaneous anaphylaxis reaction and scratching behaviors. Biol Pharm Bull. 2007;30:2201-3.
[35] Son HJ, Lee HJ, Yun-Choi HS, Ryu JH. Inhibitors of nitric oxide synthesis and TNF-alpha expression from Magnolia obovata in activated macrophages. Planta medica. 2000;66:469-71.
[36] Tanaka K, Hasegawa J, Asamitsu K, Okamoto T. Magnolia ovovata extract and its active component magnolol prevent skin photoaging via inhibition of nuclear factor kappaB. European journal of pharmacology. 2007;565:212-9.
[37] Fujita S, Taira J. Biphenyl compounds are hydroxyl radical scavengers: their effective inhibition for UV-induced mutation in Salmonella typhimurium TA102. Free radical biology & medicine. 1994;17:273-7.
[38] Lo YC, Teng CM, Chen CF, Chen CC, Hong CY. Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochemical pharmacology. 1994;47:549-53.
[39] Taira J, Ikemoto T, Mimura K, Hagi A, Murakami A, Makino K. Effective inhibition of hydroxyl radicals by hydroxylated biphenyl compounds. Free radical research communications. 1993;19 Suppl 1:S71-7.
[40] Kshirsagar N. Drug delivery systems. Indian Journal of Pharmacology. 2000;32:S54-S61.
[41] Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34:945-53.
[42] Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. International journal of pharmaceutics. 2004;282:1-18.
[43] Lu Y, Chen SC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Advanced drug delivery reviews. 2004;56:1621-33.
[44] Chow CK, Matear DW, Lawrence HP. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology. 1999;16:110-8.
[45] Mishra A, Ramteke S. Formulation and Evaluation of Mucoadhesive Buccal Film of Flurbiprofen. IntJ Pharm Tech Res. 2011;3:1825-30.
[46] Schurch S, Gehr P, Im Hof V, Geiser M, Green F. Surfactant displaces particles toward the epithelium in airways and alveoli. Respiration physiology. 1990;80:17-32.
[47] Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced drug delivery reviews. 2008;60:1615-26.
[48] Edwards DA, Dunbar C. Bioengineering of therapeutic aerosols. Annual review of biomedical engineering. 2002;4:93-107.
[49] Musante CJ, Schroeter JD, Rosati JA, Crowder TM, Hickey AJ, Martonen TB. Factors affecting the deposition of inhaled porous drug particles. Journal of pharmaceutical sciences. 2002;91:1590-600.
[50] Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67-74.
[51] Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends in biotechnology. 2007;25:563-70.
[52] Rogueda PG, Traini D. The nanoscale in pulmonary delivery. Part 2: formulation platforms. Expert opinion on drug delivery. 2007;4:607-20.
[53] Sham JO, Zhang Y, Finlay WH, Roa WH, Lobenberg R. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. International journal of pharmaceutics. 2004;269:457-67.
[54] Ohashi K, Kabasawa T, Ozeki T, Okada H. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. Journal of controlled release : official journal of the Controlled Release Society. 2009;135:19-24.
[55] Siddiqui MA, Plosker GL. The Novolizer: a multidose dry powder inhaler. Treatments in respiratory medicine. 2005;4:63-9.
[56] Brocklebank D, Ram F, Wright J, Barry P, Cates C, Davies L, et al. Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature. Health technology assessment. 2001;5:1-149.
[57] Kohler D. Novolizer: the new technology for the management of asthma therapy. Current opinion in pulmonary medicine. 2003;9 Suppl 1:S11-6.
[58] Tiano SL, Dalby RN. Comparison of a respiratory suspension aerosolized by an air-jet and an ultrasonic nebulizer. Pharmaceutical development and technology. 1996;1:261-8.
[59] Vanderhoff JW, El-Aasser MS, Ugelstad J. Polymer emulsification process. Google Patents; 1979.
[60] Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887-913.
[61] Lemoine D, Preat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. Journal of Controlled Release. 1998;54:15-27.
[62] Duddu SP, Sisk SA, Walter YH, Tarara TE, Trimble KR, Clark AR, et al. Improved lung delivery from a passive dry powder inhaler using an Engineered PulmoSphere powder. Pharmaceutical research. 2002;19:689-95.
[63] Mosen K, Backstrom K, Thalberg K, Schaefer T, Kristensen HG, Axelsson A. Particle formation and capture during spray drying of inhalable particles. Pharmaceutical development and technology. 2004;9:409-17.
[64] Takashima Y, Saito R, Nakajima A, Oda M, Kimura A, Kanazawa T, et al. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. International journal of pharmaceutics. 2007;343:262-9.
[65] Yang YT, Chen CT, Yang JC, Tsai T. Spray-dried microparticles containing polymeric micelles encapsulating hematoporphyrin. The AAPS journal. 2010;12:138-46.
[66] Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International journal of pharmaceutics. 1989;55:R1-R4.
[67] Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine : nanotechnology, biology, and medicine. 2010;6:9-24.
[68] Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 2002;295:1695-8.
[69] Almeria B, Deng W, Fahmy TM, Gomez A. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. Journal of colloid and interface science. 2010;343:125-33.
[70] Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers-Basel. 2011;3:1377-97.
[71] Commandeur S, van Beusekom HM, van der Giessen WJ. Polymers, drug release, and drug-eluting stents. Journal of interventional cardiology. 2006;19:500-6.
[72] Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release : official journal of the Controlled Release Society. 2012;161:505-22.
[73] Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N. Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjugate chemistry. 2008;19:1164-9.
[74] Lee S, Yang SC, Kao CY, Pierce RH, Murthy N. Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic acids research. 2009;37:e145.
[75] Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N. Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjugate chemistry. 2007;18:4-7.
[76] Harjunen P, Lankinen T, Salonen H, Lehto VP, Jarvinen K. Effects of carriers and storage of formulation on the lung deposition of a hydrophobic and hydrophilic drug from a DPI. International journal of pharmaceutics. 2003;263:151-63.
[77] Gjoerup J, Hilberg O, Bendstrup E. Inhaled mannitol in the treatment of non-cystic fibrosis bronchiectasis in adults. Respirology. 2012;17:927-32.
[78] US Food and Drug Administration. Guidance for industry: metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products - chemistry, manufacturing, and controls documentation. Rockville, IN: US Department of Health and Human Services. 1998.
[79] Kawashima Y, Serigano T, Hino T, Yamamoto H, Takeuchi H. Effect of surface morphology of carrier lactose on dry powder inhalation property of pranlukast hydrate. International journal of pharmaceutics. 1998;172:179-88.
[80] Steckel H, Bolzen N. Alternative sugars as potential carriers for dry powder inhalations. International journal of pharmaceutics. 2004;270:297-306.
[81] Verdon CP, Burton BA, Prior RL. Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Analytical biochemistry. 1995;224:502-8.
[82] Wang YJ, Chien YC, Wu CH, Liu DM. Magnolol-loaded core-shell hydrogel nanoparticles: drug release, intracellular uptake, and controlled cytotoxicity for the inhibition of migration of vascular smooth muscle cells. Molecular pharmaceutics. 2011;8:2339-49.
[83] Chen CYC. Magnolol encapsulated by different acyl chain length of liposomes on inhibiting proliferation of smooth muscle cells. J Taiwan Inst Chem E. 2009;40:380-6.
[84] Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Archives of pharmacal research. 2004;27:1-12.
[85] Fu X, Ping Q, Gao Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. Journal of microencapsulation. 2005;22:705-14.

QR CODE