簡易檢索 / 詳目顯示

研究生: 林建宏
Chien-Hong Lin
論文名稱: 利用層接式自我組裝方法製備聚電解質層固定化於PBAT膜
Layer-by-layer self-assembly of polyelectrolyte multilayer immobilized on PBAT films
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
Cheng-Kang Lee
王大銘
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: PBAT膜幾丁聚醣硫酸葡聚醣聚電解質層接式自我組裝血液相容性生物相容性
外文關鍵詞: PBAT, hemocompatibility, chitosan, dextran sulfate, polyelectrolyte complex, layer-by-layer self-assembly, cytocompatibility
相關次數: 點閱:328下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將以PBAT膜(Poly(butylene adipate-co-terephthalate),利用臭氧活化方式,進行聚胺基表面接枝,於膜表面產生-NH2基團,然後利用硫酸葡聚醣 (dextran sulfate,DS)與幾丁聚醣(chitosan)以層接式自我組裝方法形成多層聚集,分別探討其表面改質後血液相容性、生物相容性,並且分析血液凝固性,以作為血液導管生醫材料之應用。

層接式(Layer-by-layer, LBL)自我組裝改質方式係利用物種帶正、負電荷的性質,經由靜電力互相吸引而自組合,形成多層聚電解質的結構。由FE-SEM 及AFM觀察可知聚電解質多層結構厚度隨改質次數增加而增加且粗糙度並會些微下降。由XPS及染料確認可得知chitosan 及 dextran sulfate 量也隨固化層增加有線性增加趨勢,如此更使親水性提高。而且由於硫酸化葡聚糖量增加更降低PBAT膜蛋白質與血小板吸附進而增長血液凝血時間。整體而言,層接式自我組裝改質方式具有方便性、經濟性、可控制性更是無毒性之表面改質方法,改質後PBAT膜在血液接觸性生醫材用途深具潛力。


In this study, PBAT film was treated with ozone, followed by graft-polymerization of N-vinylformamide (NVF), and hydrolysis to introduce an amino-group bearing surface. Subsequently, dextran sulfate (DS) (as an anti-adhesive agent) and chitosan (CS) (as an antibacterial agent) were alternatively deposited onto the aminolyzed PBAT films in a layer-by-layer assembly manner, thereby constructing anti-adhesive and antibacterial polyelectrolyte complex (PEC) multilayer films. The progressive buildup of the multilayer film was verified by dye staining and XPS. These multilayer films were characterized by contact-angle and atomic force microscopy (AFM). The in-vitro evaluation of hemocompatibility was performed by measuring the adsorption of human serum albumin (HSA) and platelet adhesion as well as the blood coagulation time. The results from SEM and AFM show that the surface roughness changed little with the deposition of PEC layers. The hydrophilicity was improved with the increase of the number of PEC layers. Furthermore, the coagulation time prolonged with the number of PEC layers. Thus this demonstrated an easy process to prepare an anti-adhesive, cytocompatible, and antibacterial surface, and will be useful for surface modification of cardiovascular devices.

中文摘要II 英文摘要III 誌謝IV 目錄V 圖表索引VII 第一章緒論1 1.1研究背景1 1.2研究目的3 第二章文獻回顧4 2.1實驗材料簡介4 2.1.1PBAT (Poly(butylene adipate-co-terephthalate))4 2.1.2幾丁聚醣(chitosan)8 2.1.3硫酸葡聚醣(Dextran sulfate)12 2.2生物相容性13 2.3血液相容性14 2.4血小板與凝血作用15 2.5蛋白質吸附18 2.6血液學凝固(Blood coagulation)20 2.7活化部分凝血活酶時間(APTT)23 2.8高分子生醫材料24 2.9高分子材料表面改質(Surface Modification)26 2.10層接式自我組裝(Layer-By-Layer Self-ssembly)28 第三章實驗材料與方法30 3.1實驗項目流程圖30 3.2實驗原理31 3.3實驗材料32 3.4實驗設備34 3.5實驗步驟35 3.6表面性質測試38 3.6.1原子力顯微鏡(AFM)38 3.6.2化學分析電子譜(XPS)39 3.6.3掃描式電子顯微鏡(SEM)40 3.6.4接觸角測試(Contact angle measurement)41 3.7DPPH過氧化基分析42 3.8表面接枝密度(Surface Graft Density)43 3.9血液測試44 3.9.1活化部分凝血活酶時間(APTT)44 3.9.2血小板附著評估45 3.9.3蛋白質吸附試驗46 3.10細胞培養47 第四章結果與討論48 4.1LBL self-assembly of PEC immobilization48 4.1.1臭氧處理(Ozone treatment)48 4.1.2N-乙烯基甲醯胺(NVF)接枝率與臭氧處理時間的關係49 4.1.3 N-乙烯基甲醯胺(NVF)濃度與接枝率的關係50 4.1.4Chitosan(CS)與Dextran sulfate(DS)多層結構的接枝密度51 4.1.4.1硫酸根(sulfate)接枝率的染色測驗52 4.1.4.2胺基(amino)接枝率的染色測驗53 4.1.5接觸角(contact angle)54 4.1.6掃描式電子顯微鏡(SEM)55 4.1.7原子力顯微鏡(AFM)57 4.1.8化學分析電子譜(XPS)66 4.2活化部分凝血活酶時間(APTT)69 4.3蛋白質吸附70 4.4血小板吸附71 4.5細胞培養72 4.5.1細胞毒性72 4.5.2細胞增生74 第五章結論(Conclusion)75 第六章參考文獻(Reference)76 作者簡介81 圖表索引 2-1PBAT結構式4 2-2chitosan結構式11 2-3dextran sulfate結構式12 2-4血小板型態轉變17 2-5血液的凝固機制22 2-6LBL formation scheme28 3-1臭氧氧化裝置35 3-2Contact angle of a sessile drop41 3-3DPPH與過氧化物反應式42 3-4APTT測試流程圖44 4-1Surface density of peroxide on PBAT films versus O3 treating time48 4-2Surface density of amino on PBAT films versus O3 treating time49 4-3The dependence of surface density of amino on the concentration of NVF50 4-4The surface density of sulfate grafted52 4-5The surface density of amino grafted53 4-6Contact angle with water as a function of the number of layers54 4-7FE-SEM micrograph of PBAT film surface (A) native PBAT control; (B) {PBAT-DS(CS-DS)1}; (C) {PBAT-DS(CS-DS)2}; (D) {PBAT-DS(CS-DS)3} (E) {PBAT-DS(CS-DS)4}; (E) {PBAT-DS(CS-DS)5}56 4-8AFM images and Z value (tapping mode) of the TPU film surface (A) native PBAT control (B) aminolyzed with NVF (PBAT-N) (C) deposited by three bilayers (PBAT-DS(CS-DS)3) (D) deposited by five bilayers (PBAT-DS(CS-DS)5)58 4-9XPS spectra of PBAT-DS(CS-DS)5 film for C1s、O1s、N1s、S2p67 4-10(A)Wide range of XPS surveys for PBAT control (B)Wide range of XPS surveys for PEMs-immobilized PBAT film68 4-11The comparison of APTT adsorption on PEMs-deposited PBAT film 69 4-12The comparison of HSA adsorption on PEMs-deposited PBAT films 70 4-13comparison of platelet adhesion on PEMs-deposited PBAT films71 4-14The comparison of cell cytotoxic on PEMs-deposited PBAT films72 4-15Micrographs(100X) of fiberblasts on native and PEMs-deposited PBAT films after incubating for 3day (A)Blank (B)PBAT (C) PBAT-(CS-DS)1 (D)PBAT-(CS-DS)573 4-16The comparison of cell growth on PEMs-deposited PBAT films74

1.Guntered, “Polyurethane Handbook”, J. Biomater, Sci Polymer Edn.,9561-626(1998)
2.土肥義治, “生物高分子(第四卷)(聚酯III---應用與商品),2004-7-1
3.Absolom DR, Zingg W, Neumann AW, Protein adsorption to polymer particles: Role of surface properties, J Biomed Mater Res 1987; 21: 161-71.
4.周啟雄, “改質聚酯之抗菌性、生物相容性與界面行為”,國立台灣科技大學高分子工程技術研究所博士論文(2005)
5.Ajili SH, Ebrahimi NG, Khorasani MT. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. J Appl Polym Sci 2003; 89: 2496-506.
6.Allcock HR, Lampe FW, Contemporary Polymer Chemistry, Second Edition, New Jersey.
7.Amiji MM. Surface modification of chitosan membranes by complexation- interpenetrating of anionic polysaccharides for improved blood compatibility in hemodialysis. J Biomed Sci Polym Ed 1996; 8: 281-98.
8.Andrade JD, Surface and Interfacial Aspects of Biomedical Polymers, Vol. 1: Surface Chemistry and Physics, Plenum Publ., New York.
9.Bae JS, Seo EJ, Kang I-K. Synthesis and characterization of heparinized polyurethanes using plasma glow discharge, Biomaterials 1999; 20: 529-537.
10.Baur JW, Rubner MF, Reynolds JR, Kim S. Fo¨ rster energy transfer studies of polyelectrolyte heterostructures containing conjugated polymers: a means to estimate layer interpenetration. Langmuir 1999;15: 6460–9.
11.Borenfreund E, Borrers O. In vitro cytotoxicity assays (1984). Potential Alternatives to the Draize Ocular Allergy Test Cell Biology and Toxicology. Vol. 1, No. 1.
12.Bouraa C, Menub P, Payanc E, Picartd C, Voegeld JC, Mullera S, Stoltz JF. Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification. Biomaterials 2003; 24: 3521-30.
13.Chen Z, Zhang R, Kodama M, Nakaya T, Anticoagulant surface prepared by the heparinization of ionic polyurethane film, J Appl Polym Sci 2000; 76: 382-90.
14.Chluba J, Voegel JC, Decher G, Erbacher P, Schaaf P, Ogier J. Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2001; 2: 800-5.
15.Elam JH, Nygren H, Adsorption of coagulation proteins from whole blood on to polymer materials: Relation to platelet activation, Biomaterials 1992; 13: 3-8.
16.Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003; 24: 1121-31.
17.Forbes CD and Courtney JM, thrombosis and artificial surfaces. in Haemostasis and thrombosis, Churchill Livingstone, New York. (1980) 902-921.
18.Fujimoto K, Takebayashi Y, Inoue H, Ikada Y. Ozone-induced graft polymerization onto polymer surface. J Polym Sci A Polym Chem 1993; 31: 1035-43.
19.Grewe P, Denecke T, Machroui A. Acute and chronic tissue response to coronary stent implantation. J Am Coll Cardiol 2000; 5: 157-63.
20.Han DK, Park KD. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethane, J Biomed Mater Res: Appl Biomater 1989; 23: 87-104.
21.Herrmann R, Schmidmaier, Ma¨rkl GB, Resch A, Ha¨hnel I, Stemberger A, Alt E. Antithrombic coatings of stents using a biodegradable drug delivery technology. Thromb Haemost 1999; 82:51-7.
22.Hu SG, Tsai CE. A Correlation between Interfacial Free Energy and Albumin Adsorption in Ionic Poly(acrylonitrile-acrylamide-acrylic acid)Hydrogels. J Appl Polym Sci 1996; 58: 1809-17.
23.Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization, Biomaterials 1999; 20: 1545-51.
24.Jackson LS, Wang XJ, Dudrick SD, Gersten GD. Catheter-directed thrombolysis and/or thrombectomy with selective endovascular stenting as alternatives to systemic anticoagulation for treatment of acute deep vein thrombosis. Am J Surg 2005; 190: 864-8.
25.Kanabar V, Hirst SJ, O’Connor BJ, Page CP. Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Br J Pharmacol 2005; 146: 370-7.
26.Kang IK, Kwon OH, Kim MK, Lee YM, Sung YK, In vitro blood compatibility of functional group-grafted and heparin immobilized polyurethanes prepared by plasma grow discharge, Biomaterials. 18 (1997) 1099-1107.
27.Kang IK, Kwon OH, Lee YM, Sung YK. Preparation and surface characterization of function group-grafted and heparin-immobilized polyurethane prepared by plasma glow discharge. Biomaterials 1996; 17: 841-7.
28.Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R. Layer-by-layer deposition of hyaluronic acid and poly-l-lysine for patterned cell co-cultures. Biomaterials 2004; 25: 3583-92.
29.Lawson JH, Olsen D B, Hershgold E, Kolff J, Hadfield K, Kolff WJ. A comparsion of polyurethane and silastic artificial hearts in 10 long survival experiments in calves. Trans Am Soc Artif Intern Organs 1975; 21: 368-73.
30.Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006; 62: 58-63.
31.Lin WC, Liu TY, Yang MC. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 2004; 25: 1947-57.
32.Lin WC, Yu DG, Yang MC. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces 2005; 44: 82-92.
33.Liu X, Gao C, Shen J, Ohwald HM. Multilayer microcapsules as anti-cancer drug delivery vehicle: Deposition, sustained release, and in vitro bioactivity. Macromol. Biosci. 2005; 5: 1209-19.
34.Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 2001; 79: 1324-35.
35.Liu Y, He T, Gao C. Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells.Colloids Surf B Biointerfaces 2005; 46: 117-26.
36.Michel M, Izquierdo A, Decher G, Voegel JC, Schaaf P, Ball V. Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles obtained by spraying: integrity of the vesicles. Langmuir. 2005; 21: 7854-9.
37.Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983; 65: 55-63.
38.Osterberg E, Bergstrom K, Holmberg K, Schuman TP, Riggs JA, Burns NL, Van Alstine JM, Harris JM. Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J Biomed Mater Res 1995; 29: 741-7.
39.Park JC, Hwang YS, Lee JE, Park KD, Matsumura K, Hyon SH, Suh H. Type I atelocollagen grafting onto ozone-treated polyurethane films: Cell attachment, proliferation, and collagen synthesis. J Biomed Mater Res 2000; 52: 669-77.
40.Park KD, Kim SW, Heparin immobilization onto segmented polyurethane: effect of hydrophilic spacers, J Biomed Mater Res 1988; 22: 977-984.
41.Park KD, Kim WG, Jacobs HJ, Okano T, Kim SW, Blood compatibility of SPUU-PEO-Heparin graft copolymers, J Biomed Mater Res1992; 26: 739-56.
42.Richert L, Lavalle P, Payan E, Shu ZX, Prestwich GD, Stoltz JF, Scha P, Voegel JC, Picart C. Layer by Layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 2004; 20: 448-58.
43.Shen C, Russel WB, Auzerais FM. Materials, Interfaces and Electrochemical Phenomena Colloidal gel filtration: Experiment and Theory. AIChE Journal 1993; 40: 1876-91.
44.Son WK., Youk JH, Lee TS, Park WH. Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromol. Rapid Commun. 2004; 25: 1632-7.
45.Sondi I, Salopek-Sondi B.. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275:177–82.
46.Tan Q, Ji J, Barbosab MA, Fonseca Carlos, Shen J. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials 2003; 24: 4699-705.
47.Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 2003; 4: 1564-71.
48.Thierry B, Winnik FM, Merhi Y, Tabrizian M. Nanocoatings onto arteries via layer-by-layer deposition: toward the in vivo repair of damaged blood vessels. J Am Chem Soc 2003; 125: 495-9
49.Uchida Y, Izume M, Ohtakara A. Chitin and Chitosan, Elsevier Applied Science, London and New York, 1988, p.373.
50.Wang Y, Wang X, Hu C. Layer-by-Layer Self-Assembled Ultrathin Multilayer Films of Lanthanide Polyoxometalates and Poly(allylamine Hydrochloride) and Their Photoluminescent Properties. J Colloid Interface Sci 2002; 249: 307-15.
51.Winterton LC, Andrade JD, Feijen J, Kim SW. Heparin interaction with protein with protein-adsorbed surfaces. J Coll Interface Sci 1986; 111: 314-42.
52.Wu Q, Chen ZC, Lu DS, Lin XF. Chemo-enzymatic synthesis of raffinose-branched polyelectrolytes and self-assembly application in microcapsules. Macromol Biosci 2006; 6: 78-83.
53.Yang MC, Lin WC. Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate, Polymers for Adv Tech 2003; 14: 103-13.
54.Ye S, Wang C, Liu X, Tong Z. Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. J Control Release 2005; 106:319-28.
55.Zamore AM. Process for producing an implantable apparatus comprising a biomedical device coated with crosslinked TPU. United States Patent: 6,558,732.

無法下載圖示 全文公開日期 2011/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE