簡易檢索 / 詳目顯示

研究生: 張原瑋
Yuan-Wei Chang
論文名稱: 利用有限元素模擬對遠端股骨鎖定式骨板進行生物力學行為分析
Biomechanical behavior analysis of the distal femoral locking plate using finite element simulation
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 徐慶琪
Ching-Chi Hsu
王兆麟
Jaw-Lin Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 生物力學測試有限元素分析鎖定式骨板工作長度股骨骨折
外文關鍵詞: Biomechanical test, Finite element analysis, Locking plate, Working length, Femoral fracture
相關次數: 點閱:270下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  骨板與髓內釘是股骨骨折復位手術中經常使用的內固定治療器具,由於股骨生理結構限制,幹骺處的骨折較不適合植入髓內釘治療。近年在輔以微創傷內固定手術技術下,應用鎖定式骨板治療骨折的方式被廣泛運用在人體各部位。然而,骨板疲勞斷裂問題依然存在於臨床治療上,過去研究人員曾遇過在相對較短的治療過程反覆發生骨板斷裂且位置皆相近的特殊案例,推測原因與選用骨板本身存有結構弱點和手術進行時醫師選用的螺絲配置有關。本研究目的有二:瞭解骨板破壞原理並比較骨折發生位置對骨板受力影響,藉以指出骨板最弱處以利後續修改;檢視螺絲配置並探討工作長度對骨板應變的分佈影響及原因。
  研究之兩項目的均建立有限元素數值模型,並透過生物機械力學測試結果進行驗證與分析探討,比較在五種不同骨斷裂位置下之正向應變大小及分布狀況、軸向位移與整體剛度差異,最後依據建立之數值模型進行邊界條件微調與變形模式的探討,分析與歸納出在何種條件下骨板上的最大應力將隨工作長度增長而下降。
  數值分析結果顯示鎖定式骨板最弱處與骨折位置相關,骨幹骨折由於高彎矩環境,在力學試驗與數值模型中皆測得最高的應力應變,選用骨板進行治療手段需特別謹慎;骨板治療是踝上骨折最適合的選擇,但較薄弱的幾何處需進行改善以增加使用壽命;較長的工作長度在特定邊界條件選擇下可降低骨板上的應變並增加骨折間隙處的軸向運動,刺激骨痂生長。
  本論文研究建立之數值模型期望可做為骨科醫師臨床使用骨板之手術參考,並給予醫療器材設計人員於改良骨板設計參考之依據,及後續研究工作長度相關研究之邊界條件選擇。


  Bone plates and intramedullary nails have been widely used as internal fixtures to treat long bone fractures in the lower body. Femoral metaphyseal fractures are not suitable for fixation with intramedullary nail due to its anatomy. With the Minimally Invasive Plate Osteosynthesis (MIPO) technology, plating treatment has been widely used in various fractures. Nonetheless, the risk of plate fatigue failure remains a problem in clinical surgery. We encountered a catastrophic case involving repeated plate breakage in similar positions during a short treatment process. The reason is speculated to be related to the structural weakness of the plate and the selection of short working length. This study has two purposes: first, to understand the principles of bone plate failure and compare the effects of different fracture locations on the plate; second, to examine the screw configuration and discuss the influence of working length on the plate.
Both studies established the finite element numerical models, which were verified by the experimental results of biomechanical tests. The comparison includes the normal elastic strain value, strain distribution, axial displacement, and overall structural stiffness among five models with different fracture locations. The discussion includes the boundary conditions and deformation modes, and the analysis and summary focus on the influence and occurrence conditions of the working length effect.
The numerical results indicated that the weakness of plate was related to fracture location. Due to the high bending environment, plating treatment for femoral shaft fractures should have been approached with more meticulousness. Plating was the golden standard for distal femoral fractures, but revising the weakest geometry is warranted. The present model could serve as a reference for orthopedics in clinical plating operations and as a basis for medical device manufacturers to improve plates. The comparison of boundary conditions settings in the study on working length could also assist future research work.

中文摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1研究背景、動機與目的 1 1.2股骨解剖學構造 4 1.3文獻回顧 5 1.4本文架構 13 第二章 研究方法與材料 14 2.1 生物力學實驗 16 2.1.1 人造假骨簡介 16 2.1.2 遠端股骨外側鎖定式骨板 17 2.1.3 機械測試設置 20 2.1.4 模型試片準備 22 2.1.5 機械測試方法 25 2.2 有限元素模擬分析 26 2.2.1 有限元素法 26 2.2.2 模型幾何建置 27 2.2.3 材料設定 29 2.2.4網格劃分與收斂性分析 29 2.2.5接觸條件設定 33 2.2.6邊界條件設置 34 2.2.7破壞理論與模擬偵測數據選定 36 2.3相關性統計分析 38 2.4 模擬流程 38 第三章 結果 41 3.1 最弱處偵測研究 41 3.1.1 生物力學實驗結果 41 3.1.2 有限元素分析結果 43 3.2 工作長度影響研究 45 3.2.1 生物力學實驗結果 45 3.2.2 有限元素分析結果 51 第四章 討論 67 4.1 骨板最弱處偵測研究 67 4.1.1生物力學實驗 67 4.1.2最弱處模型模擬 70 4.1.3額外位置骨間隙模型模擬 71 4.1.4遠端大間隙模型模擬 72 4.1.5 小結 74 4.2 工作長度影響分析 74 4.2.1生物力學實驗 74 4.2.2工作長度模型-下底板影響 77 4.2.3工作長度模型-骨板與骨頭間距離影響 80 4.2.4工作長度模型-拔除螺絲順序影響 83 4.2.5工作長度模型-上治具接觸條件影響 85 4.2.6工作長度模型-不同骨間隙位置與邊界條件影響 86 4.2.7小結 88 4.3 不同邊界條件對最弱處模型影響討論 89 4.4 研究限制 90 第五章 結論與未來展望 93 5.1結論 93 5.2未來展望 94 參考文獻 95

1. Bai, Z., Gao, S., Hu, Z., and Liang, A., Comparison of Clinical Efficacy of Lateral and Lateral and Medial Double-plating Fixation of Distal Femoral Fractures. Sci. Rep., 2018. 8(1): p. 4863.
2. Griffin, X.L., Parsons, N., Zbaeda, M.M., and McArthur, J., Interventions for treating fractures of the distal femur in adults. Cochrane Database Syst. Rev., 2015. 2015(8): p. CD010606.
3. Court-Brown, C.M. and Caesar, B., Epidemiology of adult fractures: A review. Injury, 2006. 37(8): p. 691-7.
4. Kolmert, L. and Wulff, K., Epidemiology and treatment of distal femoral fractures in adults. Acta Orthop. Scand., 1982. 53(6): p. 957-62.
5. Unim, B., Minelli, G., Da Cas, R., Manno, V., et al., Trends in hip and distal femoral fracture rates in Italy from 2007 to 2017. Bone, 2021. 142: p. 115752.
6. Shah, J., Szukics, P., Gianakos, A., Liporace, F., et al., Equivalent union rates between intramedullary nail and locked plate fixation for distal femur periprosthetic fractures–a systematic review. Injury, 2020. 51(4): p. 1062-1068.
7. Huang, S.C., Lin, C.C., and Lin, J., Increasing nail-cortical contact to increase fixation stability and decrease implant strain in antegrade locked nailing of distal femoral fractures: a biomechanical study. J. Trauma, 2009. 66(2): p. 436-42.
8. Gwathmey, F.W., Jones-Quaidoo, S.M., Kahler, D., Hurwitz, S., et al., Distal femoral fractures: current concepts. J. Am. Acad. Orthop. Surg., 2010. 18(10): p. 597-607.
9. Cronier, P., Pietu, G., Dujardin, C., Bigorre, N., et al., The concept of locking plates. Orthop. Traumatol. Surg. Res., 2010. 96(4): p. S17-S36.
10. Gueorguiev, B. and Lenz, M., Why and how do locking plates fail? Injury, 2018. 49: p. S56-S60.
11. Mardian, S., Schaser, K.D., Duda, G.N., and Heyland, M., Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin. Biomech., 2015. 30(4): p. 391-6.
12. 吳健銘(2021)。股骨鎖定式骨板機械性質改善。﹝碩士論文。國立臺灣科技大學﹞臺灣博碩士論文知識加值系統。
13. 莊庭語(2019)。股骨遠端鎖定式骨板應力改善-ANSYS模擬分析與機械實驗驗證。﹝碩士論文。國立臺灣科技大學﹞臺灣博碩士論文知識加值系統。
14. 林晉(2004)。鎖定式骨髓內釘之基礎科學與臨床應用。臺北市:合計圖書。
15. Bordoni, B. and Varacallo, M., Anatomy, bony pelvis and lower limb, thigh quadriceps muscle, in StatPearls [Internet]. 2022, StatPearls Publishing.
16. Sarah, N. Femur Bone Anatomy. [Internet]. 2023, Registered Nurse RN.
17. Strauss, E.J., Schwarzkopf, R., Kummer, F., and Egol, K.A., The current status of locked plating: the good, the bad, and the ugly. J. Orthop. Trauma, 2008. 22(7): p. 479-86.
18. Lin, C.H., Chao, C.K., Ho, Y.J., and Lin, J., Modification of the screw hole structures to improve the fatigue strength of locking plates. Clin. Biomech., 2018. 54: p. 71-77.
19. Henderson, C., Kuhl, L., Fitzpatrick, D., and Marsh, J., Locking plates for distal femur fractures: is there a problem with fracture healing? J. Orthop. Trauma, 2011. 25: p. S8-S14.
20. Stoffel, K., Dieter, U., Stachowiak, G., Gächter, A., et al., Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? Injury, 2003. 34: p. B11-9.
21. Hoffmeier, K.L., Hofmann, G.O., and Muckley, T., Choosing a proper working length can improve the lifespan of locked plates A biomechanical study. Clin. Biomech., 2011. 26(4): p. 405-409.
22. Chao, P.N., Conrad, B.P., Lewis, D.D., Horodyski, M., et al., Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate. Bmc Veterinary Research, 2013. 9: p. 1-7.
23. Lee, C.H., Shih, K.S., Hsu, C.C., and Cho, T., Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Med. Eng. Phys., 2014. 36(1): p. 57-64.
24. McLachlin, S., Kreder, H., Ng, M., Jenkinson, R., et al., Proximal Screw Configuration Alters Peak Plate Strain Without Changing Construct Stiffness in Comminuted Supracondylar Femur Fractures. J. Orthop. Trauma, 2017. 31(12): p. E418-E424.
25. MacLeod, A., Simpson, A., and Pankaj, P., Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone & Joint Research, 2018. 7(1): p. 111-120.
26. Inacio, J.V., Schwarzenberg, P., Yoon, R.S., Kantzos, A., et al., Boundary conditions Matter—Impact of test setup on inferred construct mechanics in plated distal femur osteotomies. J. Biomech. Eng. , 2022. 144(8): p. 081009.
27. Chao, C.K., Chen, Y.L., Wu, J.M., Lin, C.H., et al., Contradictory working length effects in locked plating of the distal and middle femoral fractures-a biomechanical study. Clin. Biomech., 2020. 80: p. 105198.
28. Ricci, W., Tornetta, P., Zheng, Y., Soileau, R., et al. Biomechanical investigation of plate working length on fatigue characteristics of locking plate constructs in human cadaveric distal metaphyseal femoral fracture models. in 56th Annual Meeting of the Orthopaedic Research Society (Poster No. 1754) New Orleans, LA: March. 2010.
29. Heiner, A.D., Structural properties of fourth-generation composite femurs and tibias. J. Biomech., 2008. 41(15): p. 3282-4.
30. Viceconti, M., Olsen, S., Nolte, L.P., and Burton, K., Extracting clinically relevant data from finite element simulations. Clin. Biomech., 2005. 20(5): p. 451-4.
31. Group, Z.M. Solid 3D Male Skeleton Model. 2015.
32. Mobasseri, S., Karami, B., Sadeghi, M., and Tounsi, A., Bending and torsional rigidities of defected femur bone using finite element method. Biomed. Eng., 2022. 3: p. 100028.
33. Baca, V., Horak, Z., Mikulenka, P., and Dzupa, V., Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med. Eng. Phys., 2008. 30(7): p. 924-30.
34. Peng, L., Bai, J., Zeng, X., and Zhou, Y., Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med. Eng. Phys., 2006. 28(3): p. 227-33.
35. Lee, H.H.(2014)。Finite element simulations with ANSYS Workbench 15. SDC publications
36. Lo, S.H. and Ling, C., Improvement on the 10-node tetrahedral element for three-dimensional problems. Comput. Methods Appl. Mech. Engrg., 2000. 189(3): p. 961-974.
37. Dohrmann, C.R., Key, S.W., Heinstein, M.W., and Jung, J., A least‐squares approach for uniform strain triangular and tetrahedral finite elements. Int. J. Numer. Meth. Engng., 1998. 42(7): p. 1181-1197.
38. 付穌昇(2017)。ANSYS Workbench 17.0數值模擬與實例精解。人民郵電出版社
39. Nuño, N., Amabili, M., Groppetti, R., and Rossi, A., Static coefficient of friction between Ti‐6Al‐4V and PMMA for cemented hip and knee implants. J. Biomed. Mater. Res., 2002. 59(1): p. 191-200.
40. MacLeod, A.R., Simpson, A.H., and Pankaj, P., Reasons why dynamic compression plates are inferior to locking plates in osteoporotic bone: a finite element explanation. Comput. Methods Biomech. Biomed. Engin., 2015. 18(16): p. 1818-25.
41. Epari, D.R., Gurung, R., Hofmann-Fliri, L., Schwyn, R., et al., Biphasic plating improves the mechanical performance of locked plating for distal femur fractures. J. Biomech., 2021. 115: p. 110192.
42. Bel, J.C., Pitfalls and limits of locking plates. Orthop. Traumatol. Surg. Res., 2019. 105(1S): p. S103-S109.
43. Ahmad, M., Nanda, R., Bajwa, A.S., Candal-Couto, J., et al., Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury, 2007. 38(3): p. 358-364.
44. Sommer, C., Babst, R., Muller, M., and Hanson, B., Locking compression plate loosening and plate breakage: a report of four cases. J. Orthop. Trauma, 2004. 18(8): p. 571-7.
45. Ehlinger, M., Dujardin, F., Pidhorz, L., Bonnevialle, P., et al., Locked plating for internal fixation of the adult distal femur: influence of the type of construct and hardware on the clinical and radiological outcomes. Orthop. Traumatol. Surg. Res., 2014. 100(5): p. 549-54.
46. Toro, G., Calabrò, G., Toro, A., de Sire, A., et al., Locking plate fixation of distal femoral fractures is a challenging technique: a retrospective review. Clin. Cases Miner. Bone Metab., 2015. 12(Suppl 1): p. 55.
47. Vallier, H.A., Hennessey, T.A., Sontich, J.K., and Patterson, B.M., Failure of LCP condylar plate fixation in the distal part of the femur. A report of six cases. J. Bone Joint Surg. Am., 2006. 88(4): p. 846-53.
48. Tseng, W.J., Chao, C.K., Wang, C.C., and Lin, J., Notch sensitivity jeopardizes titanium locking plate fatigue strength. Injury, 2016. 47(12): p. 2726-2732.
49. Muthusamy, B., Chao, C.K., Su, S.J., Cheng, C.W., et al., Effects of merged holes, partial thread removal, and offset holes on fatigue strengths of titanium locking plates. Clin. Biomech., 2022. 96: p. 105663.
50. Taylor, M.E., Tanner, K.E., Freeman, M.A.R., and Yettram, A.L., Stress and strain distribution within the intact femur: Compression or bending. Medical Engineering & Physics, 1996. 18(2): p. 122-131.
51. Collinge, C.A., Hymes, R., Archdeacon, M., Streubel, P., et al., Unstable Proximal Femur Fractures Treated With Proximal Femoral Locking Plates: A Retrospective, Multicenter Study of 111 Cases. J. Orthop. Trauma, 2016. 30(9): p. 489-95.
52. MacLeod, A.R. and Pankaj, P., Pre-operative planning for fracture fixation using locking plates: device configuration and other considerations. Injury, 2018. 49 Suppl 1: p. S12-S18.
53. Rizk, A. and Al-Ashhab, M., Primary bone grafting with locked plating for comminuted distal femoral fractures: can it improve the results. Egypt. Orthop. J., 2015. 50(2): p. 77.
54. 楊賀凱(2019)。骨釘數量與位置影響股骨互鎖式骨板力學行為之研究。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。
55. 蕭德慶(2017)。鎖定加壓骨板之有限元素分析與最佳化設計。﹝博士論文。國立高雄應用科技大學﹞臺灣博碩士論文知識加值系統。
56. Gardner, M.J., Nork, S.E., Huber, P., and Krieg, J.C., Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury, 2010. 41(6): p. 652-6.
57. Sellei, R.M., Garrison, R.L., Kobbe, P., Lichte, P., et al., Effects of near cortical slotted holes in locking plate constructs. J. Orthop. Trauma, 2011. 25 Suppl 1: p. S35-40.
58. Wilson, J.L., Squires, M., McHugh, M., Ahn, J., et al., The geriatric distal femur fracture: nail, plate or both? Eur. J. Orthop. Surg. Traumatol., 2022: p. 1-9.
59. Beltran, M.J., Gary, J.L., and Collinge, C.A., Management of distal femur fractures with modern plates and nails: state of the art. J. Orthop. Trauma, 2015. 29(4): p. 165-72.
60. Chen, X., Andreassen, T.E., Myers, C.A., Clary, C.W., et al., Impact of periprosthetic femoral fracture fixation plating constructs on local stiffness, load transfer, and bone strains. J. Mech. Behav. Biomed. Mater., 2022. 125: p. 104960.
61. Yang, J.C., Lin, K.P., Wei, H.W., Chen, W.C., et al., Importance of a moderate plate-to-bone distance for the functioning of the far cortical locking system. Med. Eng. Phys., 2018. 56: p. 48-53.
62. Gardner, M.J., Evans, J.M., and Dunbar, R.P., Failure of fracture plate fixation. J. Am. Acad. Orthop. Surg., 2009. 17(10): p. 647-57.
63. Lewis, G.S., Mischler, D., Wee, H., Reid, J.S., et al., Finite Element Analysis of Fracture Fixation. Curr. Osteoporos. Rep., 2021. 19(4): p. 403-416.

QR CODE