簡易檢索 / 詳目顯示

研究生: 陳威元
Wei-Yuan Chen
論文名稱: 引擎球形燃燒室幾何形狀最適化研究
Optimizing Combustion Chamber of a Two-Valve Single-Cylinder Reciprocating Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
陳佳
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 514
中文關鍵詞: 引擎內燃機缸內流場燃燒室滾轉運動
外文關鍵詞: Squish
相關次數: 點閱:204下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對一部單缸二閥四行程125 c.c.引擎,進行球形燃燒室幾何設計最佳化研究。使用商業套裝計算流體力學(Computational Fluid Dynamics, CFD) 軟體CONVERGE,探討引擎在固定轉速5000 RPM時,對汽缸缸內冷流場及熱流場進行計算模擬。分析引擎燃燒室幾何結構改變時,缸內氣流繞著汽缸徑向滾轉(Tumble)運動的變化,並計算容積效率、缸內平均壓力與溫度、壓縮比、滾轉比在不同幾何設計條件下的數值變化。面平均渦度滾轉比、體平均循環渦度滾轉比等數值是用以呈現缸內滾轉運動的量化強度。燃燒室幾何結構變化會導致缸內流場模態隨著曲軸角度而改變,因而造成缸內氣流滾轉比有強度差異。缸內氣流滾轉比改變會造成紊流強度、油汽混合的優劣性質,進而影響引擎缸內燃燒情況的良窳。考慮缸內流場模態衍化、體平均循環渦度滾轉比、容積效率,可以判斷出最佳化的燃燒室幾何設計。本研究發現引擎於壓縮行程期間流場模態的衍化模態,可作為設計引擎燃燒室最佳化幾何之重要參考,以減少設計引擎燃燒室時所需要之成本與時間。本研究共進行五十八個球形燃燒室幾何設計分析計算,結果顯示原始引擎(F91)的體平均循環渦度滾轉比為0.406,本研究改變不同的穹頂幾何結構、活塞頭形狀案例中,最高的體平均循環渦度滾轉比為0.578,兩者相差將近42%,顯示穹頂幾何設計參數是影響缸內滾轉運動的主要參數。將體平均循環渦度滾轉比最佳化模型進行歧管噴油及燃燒分析,結果顯示:當引擎於高轉速運轉時,最佳模型比最差模型之引擎輸出功略微提昇;高強度缸內滾轉運動能大幅降低廢氣中汙染物的排放量。


The in-cylinder flows in the axial planes of a motored two-vavle, single-cylinder, four-stroke engine at an engine speed of 5000 RPM were diagnosed by using computational methods. Moderate and intense tumble motion were generated by changing the combustion chamber geometric design. The computations were carried out by the computational fluid dynamic (CFD) software CONVERGE. The ensemble averaged conservation equations for mass, momentum, and energy in transient conditions with the k-ε thubulence model were solved. The orthogonal, structured grid which reproduced the geometry of the inlet port, exhaust port, combustion chamber, and real fluid system was automatically generated by CONVERGE. Quantified strengths of the rotationg motions in the axial planes were represented by a dimensionless variable tumble ratio, which was defined as the ratio of mean angular velocity of the vortices in the target plane at a certain crank angle to the average angular velocity of the crank. The quantitative results of cycle-averaged tumble ratio indicated the correlation between strengths of tumble motion and combustion chamber geometric design. The results showed that the engine with an optimized combustion chamber presented an significant increase in cycle-averaged tumble ratio by about 42%, an insignificant increase in power output by about 0.3%, and drastic reductions in exhaust of CO and NOx when compared with those of the original engine.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 xiv 表圖索引 xvii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的與方法 7 第二章 標的引擎規格 8 2.1 幾何構造 8 2.2 尺寸 9 第三章 計算方法 10 3.1 計算流力軟體簡介 10 3.2 統御方程式 11 3.3 邊界條件與初始條件 16 3.4 數值模擬 17 第四章 分析參數定義 28 4.1 物理參數 28 4.2 量化模式 38 第五章 修改燃燒室穹頂幾何參數Sc及Rc之滾轉運動計算結果 40 5.1 a1模型冷流場計算 40 5.2 a2模型冷流場計算 41 5.3 a3模型冷流場計算 42 5.4 a4模型冷流場計算 44 5.5 a5模型冷流場計算 45 5.6 a6模型冷流場計算 47 5.7 a7模型冷流場計算 48 5.8 a8模型冷流場計算 49 5.9 a9模型冷流場計算 51 5.10 a10模型冷流場計算 52 5.11 a11模型冷流場計算 54 5.12 a12模型冷流場計算 55 5.13 a13模型冷流場計算 56 5.14 容積效率及缸內溫度與壓力分析 58 5.15 滾轉比分析 59 5.16 兩種量化模式趨勢比較 64 5.17 量化模式與CONVERGE算法比較 64 5.18 幾何參數Sc之體平均循環渦度滾轉比隨參數Rc變化 64 5.19 計算結果之比較與討論 65 5.20 討論 65 第六章 修改燃燒室穹頂幾何參數Rr與θ之滾轉運動計算結果 66 6.1 b1模型冷流場計算 66 6.2 b2模型冷流場計算 68 6.3 b3模型冷流場計算 69 6.4 b4模型冷流場計算 71 6.5 b5模型冷流場計算 73 6.6 b6模型冷流場計算 74 6.7 b7模型冷流場計算 76 6.8 b8模型冷流場計算 78 6.9 b9模型冷流場計算 79 6.10 b10模型冷流場計算 81 6.11 b11模型冷流場計算 82 6.12 b12模型冷流場計算 84 6.13 b13模型冷流場計算 85 6.14 b14模型冷流場計算 87 6.15 b15模型冷流場計算 88 6.16 b16模型冷流場計算 90 6.17 b17模型冷流場計算 91 6.18 b18模型冷流場計算 93 6.19 b19模型冷流場計算 94 6.20 b20模型冷流場計算 96 6.21 b21模型冷流場計算 97 6.22 b22模型冷流場計算 99 6.23 b23模型冷流場計算 100 6.24 b24模型冷流場計算 102 6.25 b25模型冷流場計算 103 6.26 b26模型冷流場計算 105 6.27 b27模型冷流場計算 106 6.28 b28模型冷流場計算 108 6.29 容積效率及缸內溫度與壓力分析 109 6.30 滾轉比分析 111 6.31 幾何參數θ之體平均循環渦度滾轉比隨參數Rr變化 116 6.32 量化模式趨勢比較 116 6.33 計算結果之比較與討論 116 6.34 討論 117 第七章 修改活塞頂部幾何參數設計之滾轉運動計算結果 118 7.1 c1模型冷流場計算 118 7.2 c2模型冷流場計算 120 7.3 c3模型冷流場計算 121 7.4 c4 模型冷流場計算 123 7.5 c5 模型冷流場計算 124 7.6 c6 模型冷流場計算 126 7.7 c7 模型冷流場計算 127 7.8 c8 模型冷流場計算 129 7.9 c9 模型冷流場計算 130 7.10 c10 模型冷流場計算 132 7.11 c11 模型冷流場計算 133 7.12 c12 模型冷流場計算 135 7.13 c13 模型冷流場計算 136 7.14 c14 模型冷流場計算 138 7.15 c15 模型冷流場計算 139 7.16 c16 模型冷流場計算 141 7.17 c17 模型冷流場計算 142 7.18 c18 模型冷流場計算 144 7.19 容積效率及缸內溫度與壓力分析 145 7.20 滾轉比分析 147 7.21 修改淺碟形活塞頂部幾何參數 151 7.22 修改深盤形活塞頂部幾何參數 152 7.23 量化模式趨勢比較 152 7.24 計算結果之比較與討論 152 7.25 討論 153 第八章 噴油燃燒模型計算結果 154 8.1 a11模型缸內噴油計算 154 8.2 F91模型缸內噴油計算 155 8.3 b26模型缸內噴油計算 157 8.4 缸內溫度壓力及燃油質量分析 158 8.5 缸內油氣均勻性分析 159 8.6 缸內燃油液滴平均粒徑 159 8.7 缸內平均壓力隨缸內容積分析 159 8.8 燃燒汙染物分析 159 8.9 討論 160 第九章 結果與討論 161 9.1 結論 161 9.2 建議 161 參考文獻 163

[1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
[2] 李進修、王漢英:「汽機車引擎設計與分析技術」,國立清華大學出版社,新竹,臺灣,中華民國,2005。
[3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
[4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines”-The 1986 Freeman Scholar Lecture, Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, London, 1972.
[6] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, Vol. 102, 1993, pp. 1081-1092. Also in SAE Transactions SAE 930821.
[7] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, Vol. 98, 1989, pp. 2042-203. Also in SAE Transactions SAE 892096.
[8] Endres, H., Neuber, H.-J, and Wurms, R., “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, Vol. 101, 1992, pp. 942-953. Also in SAE Transactions SAE 920516.
[9] Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O.,“Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, Vol. 100, 1991, pp. 729-740. Also in SAE Transactions SAE 910477.
[10] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979, pp. 383-400. Also in SAE Transactions SAE 790095.
[11] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979, pp. 371-382. Also in SAE Transactions SAE 790094.
[12] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979, pp. 383-400. Also in SAE Transactions SAE 790095.
[13] Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston,” Journal of Engines, Vol. 105, 1996, pp. 1627-1639. Also in SAE Transactions SAE 9961195.
[14] Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, Vol. 108, 1999, pp. 1652-1663. Also in SAE Transactions SAE 1999-01-3540.
[15] Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, Vol. 111, 2002, pp. 1919-1929. Also in SAE Transactions SAE 2002-01-1120.
[16] Kihyung, L., Choongsik, B., Kernyong, K., “The Effects of Tumble and Swirl Flows on Flame Propagation in a Four-Valve S.I. Engine,” Applied Thermal Engineering, Vol. 27, 2007, pp. 2122-2130.
[17] 張小燕,「一款汽油機的性能提升研究」,CDAJ-China中國用戶論文集,長安汽車工程研究院,重慶,四川,中國,2004。
[18] Surenda, G., Klunal, A., Vamshi, K., Cho, S., “Steady and Transient CFD Approach for Port Optimization,” Journal of Engines. Also in SAE Transactions SAE 2008-01-1430.
[19] Rakopoulos, C., Kosmadakis, G., Pariotis, E., “Investigation of Piston Bowl Geometry and Speed Effects in a Motored HSDI Diesel Engine Using a CFD Against a Quasi-Dimensional Model,” Energy Conversion and Management, Vol. 51, 2010, pp. 470-484.
[20] 林岱衛:「不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的PIV診測」,機械工程技術研究所碩士論文,國立台灣科技大學,2004。
[21] 楊賀順:「平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用」,機械工程技術研究所碩士論文,國立台灣科技大學,2004。
[22] 林冠旭:「增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測」,機械工程技術研究所碩士論文,國立台灣科技大學,台北,臺灣,中華民國,2006。
[23] 游曜鴻:「內燃機缸內氣流滾轉及旋轉運動最佳化技術」,機械工程技術研究所碩士論文,國立台灣科技大學,台北,臺灣,中華民國,2011。
[24] 林政諺:「二閥四行程機車引擎瞬間流場與歧管噴油特性的計算與實驗分析」,機械工程技術研究所碩士論文,國立台灣科技大學,台北,臺灣,中華民國,2012。
[25] 周光宇:「內燃機進氣閥入射角對缸內氣流滾轉運動的影響與最佳化設計」,機械工程技術研究所碩士論文,國立台灣科技大學,台北,臺灣,中華民國,2015。
[26] 林聖諺:「以計算模擬與 PIV量測方法探討二閥引擎的缸內流場」,機械工程技術研究所碩士論文,國立台灣科技大學,台北,臺灣,中華民國,2015。

無法下載圖示 全文公開日期 2021/06/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE