簡易檢索 / 詳目顯示

研究生: Thong Minh Le Pham
Thong - Minh Le Pham
論文名稱: Density-Functional Theory Studies on Activation and Reactions of Light Alkanes over IrO2 (110) Surface
Density-Functional Theory Studies on Activation and Reactions of Light Alkanes over IrO2 (110) Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn D. Lin
蔡大翔
Dah-Shyang Tsai
蔡明剛
Ming-Kang Tsai
許昭萍
Chao-Ping Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 126
中文關鍵詞: Alkane activationIrO2(110) surfaceDFTdehydrogenation reactionC-C and C-O coupling reaction
外文關鍵詞: Alkane activation, IrO2(110) surface, DFT, dehydrogenation reaction, C-C and C-O coupling reaction
相關次數: 點閱:189下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The capability to activate light alkanes at mild temperature and selectively control the oxidation reactions are defined the characteristic of an efficient catalyst for the direct oxidation of light alkanes to value-added products. IrO2 (110) surface, which possesses coordinativedly unsaturated iridium and oxygen atoms, is expected to be a potential catalyst to activate light alkanes at mild temperature. In this thesis, density functional theory (DFT) calculations were employed to explore the activation of methane and ethane on the IrO2 (110) surface. The possible reaction pathways of methane and ethane on the IrO2 (110) surface were also investigated. Furthermore, the adsorption characeristics of CHx (x=1-4) and C2H6 on the IrO2 (110) surface were studied using the analyses of density of states (DOS) and electron density difference (EDD) contours.
The calculated results indicate that CH4 and C2H6 adsorb on the IrO2 (110) surface by the agostic interaction between C-H bonds and coordinativedly unsaturated Ir atoms of surface. In addition to the agostic interaction, dispersion interaction also plays an important role in the interaction of CH4 and C2H6 with IrO2 (110) surface. Both of the agostic and dispersion interaction facilitate molecular-mediated mechanism for the first C–H bond cleavage of these alkanes with a low kinetic barriers of 0.25 eV and 0.50 eV which are likely to occur at mild temperature condition. The dehydrogenation reactions of methane and ethane on the IrO2 (110) surface are occurred by the transfer of hydrogen atoms to Obr and Otop sites. Among the dehydrogenation reactions of methane, CH2 dissociation into CH has highest activation energy, making CH2 the most significant monomeric building block on the IrO2 (110) surface. Based on our DFT calculations, the direct conversion of methane to formaldehyde is a possible route on the IrO2 (110) surface via selective CH4 dehydrogenation reactions to CH2 and then the coupling reaction of CH2 with the Otop atom. The energetics for ethane dehydrogenation to ethylene are accessible. However, since the adsorption energy of ethylene is rather high on the IrO2 (110) surface, ethylene prefers undergoing further reactions than desorption from the surface. Therefore, the production of ethylene is infeasible on the IrO2 (110) surface. Instead, the coupling reaction ethylene with Otop to form oxametallacycle is favorable on the IrO2 (110) surface. DFT calculations predict that 1, 2-H shift reaction of oxametallacycle intermediate towards the formation of acetaldehyde is more favorable than ring closure of oxametallacycle to the formation of ethylene oxide. The density functional theory calculations from this work provide an initial basis for understanding and designing efficient catalyst for the direct conversion of light alkanes to the value-added chemicals under mild temperature.


The capability to activate light alkanes at mild temperature and selectively control the oxidation reactions are defined the characteristic of an efficient catalyst for the direct oxidation of light alkanes to value-added products. IrO2 (110) surface, which possesses coordinativedly unsaturated iridium and oxygen atoms, is expected to be a potential catalyst to activate light alkanes at mild temperature. In this thesis, density functional theory (DFT) calculations were employed to explore the activation of methane and ethane on the IrO2 (110) surface. The possible reaction pathways of methane and ethane on the IrO2 (110) surface were also investigated. Furthermore, the adsorption characeristics of CHx (x=1-4) and C2H6 on the IrO2 (110) surface were studied using the analyses of density of states (DOS) and electron density difference (EDD) contours.
The calculated results indicate that CH4 and C2H6 adsorb on the IrO2 (110) surface by the agostic interaction between C-H bonds and coordinativedly unsaturated Ir atoms of surface. In addition to the agostic interaction, dispersion interaction also plays an important role in the interaction of CH4 and C2H6 with IrO2 (110) surface. Both of the agostic and dispersion interaction facilitate molecular-mediated mechanism for the first C–H bond cleavage of these alkanes with a low kinetic barriers of 0.25 eV and 0.50 eV which are likely to occur at mild temperature condition. The dehydrogenation reactions of methane and ethane on the IrO2 (110) surface are occurred by the transfer of hydrogen atoms to Obr and Otop sites. Among the dehydrogenation reactions of methane, CH2 dissociation into CH has highest activation energy, making CH2 the most significant monomeric building block on the IrO2 (110) surface. Based on our DFT calculations, the direct conversion of methane to formaldehyde is a possible route on the IrO2 (110) surface via selective CH4 dehydrogenation reactions to CH2 and then the coupling reaction of CH2 with the Otop atom. The energetics for ethane dehydrogenation to ethylene are accessible. However, since the adsorption energy of ethylene is rather high on the IrO2 (110) surface, ethylene prefers undergoing further reactions than desorption from the surface. Therefore, the production of ethylene is infeasible on the IrO2 (110) surface. Instead, the coupling reaction ethylene with Otop to form oxametallacycle is favorable on the IrO2 (110) surface. DFT calculations predict that 1, 2-H shift reaction of oxametallacycle intermediate towards the formation of acetaldehyde is more favorable than ring closure of oxametallacycle to the formation of ethylene oxide. The density functional theory calculations from this work provide an initial basis for understanding and designing efficient catalyst for the direct conversion of light alkanes to the value-added chemicals under mild temperature.

Chapter 1. Introduction 1 1.1 Natural Gas- An Alternative Hydrocarbon Feedstock 1 1.2 Methane Conversions 3 1.2.1 Oxidative Coupling of Methane 5 1.2.2 Partial Oxidation of Methane to C1-Oxygenates 6 1.3 Ethane Conversions to Ethylene and C2-Oxygenates 8 1.4 Iridium Dioxide 9 1.5 The Scope of this Work 10 Chapter 2. Density-Functional Theory Method for Studying Surface Chemical Reaction 13 2.1 First-Principles Calculation 13 2.2 Time-Independent Many-Body Schrödinger Equation 14 2.3 Born–Oppenheimer Approximation 15 2.4 Density-Functional Theory 16 2.4.1 Hohenberg-Kohn Theorems 17 2.4.2 Kohn-Sham Equation 18 2.4.3 Exchange-Correlation Functionals 20 2.5 Density-Functional Theory Calculation for Solid Materials 21 2.5.1 Supercell Approach 22 2.5.2 Plane Wave 23 2.5.3 Pseudo-Potentials 24 2.5.4 Brillouin-Zone Sampling 25 2.5.5 Geometry Optimization 25 2.5.6 Finding the Transition State 26 2.5.7 Vibrational Frequency Calculation 27 2.6 Computational Details 28 2.7 Surface Model 29 Chapter 3. Methane Activation and Reactions on the IrO2 (110) Surface 31 3.1 Adsorption of CH4 on the IrO2 (110) Surface 31 3.2 Adsorption of CHx (x= 0-3) on the IrO2 (110) Surface 35 3.3 Dehydrogenation of CHx (x = 1-4) by Obr on the IrO2 (110) Surface 42 3.4 Dehydrogenation of CHx (x = 2-4) by Otop on the IrO2 (110) Surface 46 3.5 C-C Coupling reactions on the IrO2 (110) Surface 50 3.6 C-O Coupling reactions on the IrO2 (110) Surface 52 3.6.1 Formation of Methanol and Formaldehyde on the IrO2 (110) Surface 52 3.6.2 Desorption of Formaldehyde from the IrO2 (110) Surface 55 3.7 Summary 57 Chapter 4. Ethane Activation and Reactions on the IrO2 (110) Surface 59 4.1 Adsorption of C2H6 on the IrO2 (110) Surface 59 4.2 Adsorption of C2Hx (x=3, 4, 5) on the IrO2 (110) Surface 64 4.2.1 Ethyl adsorption on the IrO2 (110) Surface 65 4.2.2 Ethylene Adsorption on the IrO2 (110) Surface 66 4.2.3 Vinyl Adsorption on the IrO2 (110) Surface 67 4.3 Reactions of Ethane on the IrO2 (110) Surface 68 4.3.1 Ethane Dehydrogenation on the IrO2 (110) Surface 68 4.3.2 C-C Bond scission on the IrO2 (110) Surface 71 4.3.3 Ethyl dehydrogenation on the IrO2 (110) Surface 72 4.3.4 Rearrangement of Ethylene on the IrO2 (110) Surface 74 4.3.5 Ethylene dehydrogenation on the IrO2 (110) Surface 76 4.3.6 Formation of Oxametallacycle on the IrO2 (110) Surface 78 4.3.7 Formation of Ethylene oxide and Acetaldehyde on the IrO2 (110) Surface 80 4.4 Summary 83 Chapter 5. Conclusions 84

1. Dry, M. E., Practical and Theoretical Aspects of the Catalytic Fischer-Tropsch Process. Applied Catalysis, A: General 1996, 138, 319-344.
2. Lange, J.-P., Methanol Synthesis: A Short Review of Technology Improvements. Catalysis Today 2001, 64, 3-8.
3. Tijm, P. J. A.; Waller, F. J.; Brown, D. M., Methanol Technology Developments for the New Millennium. Applied Catalysis A: General 2001, 221, 275-282.
4. Lunsford, J. H., Catalytic Conversion of Methane to More Useful Chemicals and Fuels: A Challenge for the 21st Century. Catalysis Today 2000, 63, 165-174.
5. Holmen, A., Direct Conversion of Methane to Fuels and Chemicals. Catalysis Today 2009, 142, 2-8.
6. Alvarez-Galvan, M. C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R. M.; Fierro, J. L. G., Direct Methane Conversion Routes to Chemicals and Fuels. Catalysis Today 2011, 171, 15-23.
7. Hammond, C.; Conrad, S.; Hermans, I., Oxidative Methane Upgrading. ChemSusChem 2012, 5, 1668-1686.
8. Srivastave, R. D.; Zhou, P.; Stiegel, G. J.; Rao, V. U. S.; Cinquegrane, G., Direct Conversion of Methane to Liquid Fuels and Chemicals. In Catalysis: Volume 9, Spivey, J. J., Ed. The Royal Society of Chemistry: 1992; Vol. 9, pp 183-228.
9. Tang, P.; Zhu, Q.; Wu, Z.; Ma, D., Methane Activation: The Past and Future. Energy & Environmental Science 2014, 7, 2580-2591.
10. Keller, G. E.; Bhasin, M. M., Synthesis of Ethylene via Oxidative Coupling of Methane: I. Determination of Active Catalysts. Journal of Catalysis 1982, 73, 9-19.
11. Ito, T.; Lunsford, J. H., Synthesis of Ethylene and Ethane by Partial Oxidation of Methane over Lithium-Doped Magnesium Oxide. Nature 1985, 314, 721-722.
12. Sofranko, J. A.; Leonard, J. J.; Jones, C. A., The Oxidative Conversion of Methane to Higher Hydrocarbons. Journal of Catalysis 1987, 103, 302-310.
13. Otsuka, K.; Wang, Y., Direct Conversion of Methane into Oxygenates. Applied Catalysis A: General 2001, 222, 145-161.
14. Hutchings, G. J.; Scurrell, M. S.; Woodhouse, J. R., Oxidative Coupling of Methane Using Oxide Catalysts. Chemical Society Reviews 1989, 18, 251-283.
15. Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M., Statistical Analysis of Past Catalytic Data on Oxidative Methane Coupling for New Insights into the Composition of High-Performance Catalysts. ChemCatChem 2011, 3, 1935-1947.
16. Krylov, O. V., Catalytic Reactions of Partial Methane Oxidation. Catalysis Today 1993, 18, 209-302.
17. Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M.; Schlögl, R.; Schomäcker, R., A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews - Science and Engineering 2011, 53, 424-514.
18. Wu, M. C.; Truong, C. M.; Coulter, K.; Goodman, D. W., Investigations of Active Sites for Methane Activation in the Oxidative Coupling Reaction over Pure and Li-Promoted MgO Catalysts. Journal of Catalysis 1993, 140, 344-352.
19. Peil, K. P.; Goodwin Jr, J. G.; Marcelin, G., Surface Phenomena During the Oxidative Coupling of Methane over Li/MgO. Journal of Catalysis 1991, 131, 143-155.
20. Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlögl, R., Sites for Methane Activation on Lithium-Doped Magnesium Oxide Surfaces. Angewandte Chemie International Edition 2014, 53, 8774-8778.
21. Campbell, K. D.; Zhang, H.; Lunsford, J. H., Methane Activation by the Lanthanide Oxides. Journal of Physical Chemistry 1988, 92, 750-753.
22. Palmer, M. S.; Neurock, M.; Olken, M. M., Periodic Density Functional Theory Study of Methane Activation over La2O3:  Activity of O2-, O-, O22-, Oxygen Point Defect, and Sr2+-Doped Surface Sites. Journal of the American Chemical Society 2002, 124, 8452-8461.
23. Li, B.; Metiu, H., Dissociation of Methane on La2O3 Surfaces Doped with Cu, Mg, or Zn. Journal of Physical Chemistry C 2011, 115, 18239-18246.
24. Lacombe, S.; Geantet, C.; Mirodatos, C., Oxidative Coupling of Methane over Lanthana Catalysts: I. Identification and Role of Specific Active-Sites. Journal of Catalysis 1995, 151, 439-452.
25. Lei, Y.; Chu, C.; Li, S.; Sun, Y., Methane Activations by Lanthanum Oxide Clusters. Journal of Physical Chemistry C 2014, 118, 7932-7945.
26. Chu, C.; Zhao, Y.; Li, S.; Sun, Y., Role of Peroxides on La2O3 Catalysts in Oxidative Coupling of Methane. Journal of Physical Chemistry C 2014, 118, 27954-27960.
27. Driscoll, D. J.; Martir, W.; Wang, J. X.; Lunsford, J. H., Formation of Gas-Phase Methyl Radicals over Magnesium Oxide. Journal of the American Chemical Society 1985, 107, 58-63.
28. Campbell, K. D.; Morales, E.; Lunsford, J. H., Gas-Phase Coupling of Methyl Radicals During the Catalytic Partial Oxidation of Methane. Journal of the American Chemical Society 1987, 109, 7900-7901.
29. Luo, L.; Tang, X.; Wang, W.; Wang, Y.; Sun, S.; Qi, F.; Huang, W., Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy. Sci. Rep. 2013, 3.
30. Lunsford, J. H., The Catalytic Oxidative Coupling of Methane. Angewandte Chemie, International Edition 1995, 34, 970-980.
31. Zhu, Q.; Wegener, S. L.; Xie, C.; Uche, O.; Neurock, M.; Marks, T. J., Sulfur as a Selective ‘Soft’ Oxidant for Catalytic Methane Conversion Probed by Experiment and Theory. Nat Chem 2013, 5, 104-109.
32. Guo, X., et al., Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 2014, 344, 616-619.
33. Wolf, E. E., Methane to Light Hydrocarbons via Oxidative Methane Coupling: Lessons from the Past to Search for a Selective Heterogeneous Catalyst. Journal of Physical Chemistry Letters 2014, 5, 986-988.
34. Foster, N. R., Direct Catalytic Oxidation of Methane to Methanol — A Review. Applied Catalysis 1985, 19, 1-11.
35. Gesser, H. D.; Hunter, N. R.; Prakash, C. B., The Direct Conversion of Methane to Methanol by Controlled Oxidation. Chemical Reviews 1985, 85, 235-244.
36. Taylor, S. H.; Hargreaves, J. S. J.; Hutchings, G. J.; Joyner, R. W.; Lembacher, C. W., The Partial Oxidation of Methane to Methanol: An Approach to Catalyst Design. Catalysis Today 1998, 42, 217-224.
37. Hall, T. J.; Hargreaves, J. S. J.; Hutchings, G. J.; Joyner, R. W.; Taylor, S. H., Catalytic Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane. Fuel Processing Technology 1995, 42, 151-178.
38. Deo, G.; Wachs, I. E., Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol. Journal of Catalysis 1994, 146, 323-334.
39. Liu, H. F.; Liu, R. S.; Liew, K. Y.; Johnson, R. E.; Lunsford, J. H., Partial Oxidation of Methane by Nitrous Oxide over Molybdenum on Silica. Journal of the American Chemical Society 1984, 106, 4117-4121.
40. Pitchai, R.; Klier, K., Partial Oxidation of Methane. Catalysis Reviews 1986, 28, 13-88.
41. Sheppard, T.; Hamill, C. D.; Goguet, A.; Rooney, D. W.; Thompson, J. M., A Low Temperature, Isothermal Gas-Phase System for Conversion of Methane to Methanol over Cu-ZSM-5. Chemical Communications 2014, 50, 11053-11055.
42. Wulfers, M. J.; Teketel, S.; Ipek, B.; Lobo, R. F., Conversion of Methane to Methanol on Copper-Containing Small-Pore Zeolites and Zeotypes. Chemical Communications 2015, 51, 4447-4450.
43. Hammond, C., et al., Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by Using Copper-Promoted Fe-ZSM-5. Angewandte Chemie International Edition 2012, 51, 5129-5133.
44. Reuss, G.; Disteldorf, W.; Gamer, A. O.; Hilt, A., Formaldehyde. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2000.
45. Naito, S., Methane Conversion by Various Metal, Metal Oxide and Metal Carbide Catalysts. Catalysis Surveys from Japan 2000, 4, 3-15.
46. Wang, Z.-C.; Dietl, N.; Kretschmer, R.; Ma, J.-B.; Weiske, T.; Schlangen, M.; Schwarz, H., Direct Conversion of Methane into Formaldehyde Mediated by [Al2O3].+ at Room Temperature. Angewandte Chemie International Edition 2012, 51, 3703-3707.
47. Spencer, N. D., Partial Oxidation of Methane to Formaldehyde by Means of Molecular Oxygen. Journal of Catalysis 1988, 109, 187-197.
48. Parmaliana, A.; Frusteri, F.; Mezzapica, A.; Scurrell, M. S.; Giordano, N., Novel High Activity Catalyst for Partial Oxidation of Methane to Formaldehyde. Journal of the Chemical Society, Chemical Communications 1993, 751-753.
49. Mann, R. S.; Dosi, M. K., Partial Oxidation of Methane to Formaldehyde over Halogen Modified Catalyst. Journal of Chemical Technology and Biotechnology 1979, 29, 467-479.
50. Arena, F.; Frusteri, F.; Parmaliana, A., Kinetics of the Partial Oxidation of Methane to Formaldehyde on Silica Catalyst. AIChE Journal 2000, 46, 2285-2294.
51. Fajardo, C. A. G.; Niznansky, D.; N’Guyen, Y.; Courson, C.; Roger, A.-C., Methane Selective Oxidation to Formaldehyde with Fe-Catalysts Supported on Silica or Incorporated into the Support. Catalysis Communications 2008, 9, 864-869.
52. Matsumura, H.; Okumura, K.; Shimamura, T.; Ikenaga, N.-O.; Miyake, T.; Suzuki, T., Selective Oxidation of Methane to Formaldehyde over Antimony Oxide-Loaded Catalyst. Journal of Molecular Catalysis A: Chemical 2006, 250, 122-130.
53. Bañares, M. A.; Fierro, J. L. G., Selective Oxidation of Methane to Formaldehyde on Supported Molybdate Catalysts. Catalysis Letters 1993, 17, 205-211.
54. Yao, Y.; Graziano, D.; Riddle, M.; Cresko, J.; Masanet, E., Greener Pathways for Energy-Intensive Commodity Chemicals: Opportunities and Challenges. Current Opinion in Chemical Engineering 2014, 6, 90-98.
55. Cavani, F.; Ballarini, N.; Cericola, A., Oxidative Dehydrogenation of Ethane and Propane: How Far from Commercial Implementation? Catalysis Today 2007, 127, 113-131.
56. Gärtner, C. A.; van Veen, A. C.; Lercher, J. A., Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem 2013, 5, 3196-3217.
57. Sun, M.; Zhang, J.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J.-M., Catalytic Oxidation of Light Alkanes (C1–C4) by Heteropoly Compounds. Chemical Reviews 2013, 114, 981-1019.
58. Čapek, L.; Bulánek, R.; Adam, J.; Smoláková, L.; Sheng-Yang, H.; Čičmanec, P., Oxidative Dehydrogenation of Ethane over Vanadium-Based Hexagonal Mesoporous Silica Catalysts. Catalysis Today 2009, 141, 282-287.
59. Čapek, L.; Adam, J.; Grygar, T.; Bulánek, R.; Vradman, L.; Košová-Kučerová, G.; Čičmanec, P.; Knotek, P., Oxidative Dehydrogenation of Ethane over Vanadium Supported on Mesoporous Materials of M41S Family. Applied Catalysis A: General 2008, 342, 99-106.
60. Blasco, T.; Galli, A.; López Nieto, J. M.; Trifiró, F., Oxidative Dehydrogenation of Ethane and n-Butane on VOx/Al2O3catalysts. Journal of Catalysis 1997, 169, 203-211.
61. Lin, X.; Poeppelmeier, K. R.; Weitz, E., Oxidative Dehydrogenation of Ethane with Oxygen Catalyzed by K–Y Zeolite Supported First-Row Transition Metals. Applied Catalysis A: General 2010, 381, 114-120.
62. Lin, X.; Hoel, C. A.; Sachtler, W. M. H.; Poeppelmeier, K. R.; Weitz, E., Oxidative Dehydrogenation (ODH) of Ethane with O2 as Oxidant on Selected Transition Metal-Loaded Zeolites. Journal of Catalysis 2009, 265, 54-62.
63. Quintana-Solórzano, R.; Barragán-Rodríguez, G.; Armendáriz-Herrera, H.; López-Nieto, J. M.; Valente, J. S., Understanding the Kinetic Behavior of a Mo–V–Te–Nb Mixed Oxide in the Oxydehydrogenation of Ethane. Fuel 2014, 138, 15-26.
64. Mao, S.; Li, B.; Su, D., The First Principles Studies on the Reaction Pathway of the Oxidative Dehydrogenation of Ethane on the Undoped and Doped Carbon Catalyst. Journal of Materials Chemistry A 2014, 2, 5287-5294.
65. Zhu, H.; Dong, H.; Laveille, P.; Saih, Y.; Caps, V.; Basset, J.-M., Metal Oxides Modified NiO Catalysts for Oxidative Dehydrogenation of Ethane to Ethylene. Catalysis Today 2014, 228, 58-64.
66. Li, B.; Su, D., Theoretical Studies on Ethylene Selectivity in the Oxidative Dehydrogenation Reaction on Undoped and Doped Nanostructured Carbon Catalysts. Chemistry – An Asian Journal 2013, 8, 2605-2608.
67. Valente, J. S.; Quintana-Solórzano, R.; Armendáriz-Herrera, H.; Barragán-Rodríguez, G.; López-Nieto, J. M., Kinetic Study of Oxidative Dehydrogenation of Ethane over MoVTeNb Mixed-Oxide Catalyst. Industrial & Engineering Chemistry Research 2013, 53, 1775-1786.
68. Bodke, A. S.; Olschki, D. A.; Schmidt, L. D.; Ranzi, E., High Selectivities to Ethylene by Partial Oxidation of Ethane. Science 1999, 285, 712-715.
69. Huff, M.; Schmidt, L. D., Ethylene Formation by Oxidative Dehydrogenation of Ethane over Monoliths at Very Short Contact Times. The Journal of Physical Chemistry 1993, 97, 11815-11822.
70. Argyle, M. D.; Chen, K.; Bell, A. T.; Iglesia, E., Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. The Journal of Physical Chemistry B 2002, 106, 5421-5427.
71. Labinger, J. A., Selective Alkane Oxidation: Hot and Cold Approaches to a Hot Problem. Journal of Molecular Catalysis A: Chemical 2004, 220, 27-35.
72. Cavaliere, V. N.; Crestani, M. G.; Pinter, B.; Pink, M.; Chen, C.-H.; Baik, M.-H.; Mindiola, D. J., Room Temperature Dehydrogenation of Ethane to Ethylene. Journal of the American Chemical Society 2011, 133, 10700-10703.
73. Crestani, M. G.; Hickey, A. K.; Gao, X.; Pinter, B.; Cavaliere, V. N.; Ito, J.-I.; Chen, C.-H.; Mindiola, D. J., Room Temperature Dehydrogenation of Ethane, Propane, Linear Alkanes C4–C8, and Some Cyclic Alkanes by Titanium–Carbon Multiple Bonds. Journal of the American Chemical Society 2013, 135, 14754-14767.
74. Qiao, A.; Kalevaru, V. N.; Radnik, J.; Düvel, A.; Heitjans, P.; Kumar, A. S. H.; Prasad, P. S. S.; Lingaiah, N.; Martin, A., Oxidative Dehydrogenation of Ethane to Ethylene over V2O5/Al2O3 Catalysts: Effect of Source of Alumina on the Catalytic Performance. Industrial & Engineering Chemistry Research 2014, 53, 18711-18721.
75. Skoufa, Z.; Xantri, G.; Heracleous, E.; Lemonidou, A. A., A Study of Ni–Al–O Mixed Oxides as Catalysts for the Oxidative Conversion of Ethane to Ethylene. Applied Catalysis A: General 2014, 471, 107-117.
76. Zhao, Z.; Yamada, Y.; Teng, Y.; Ueda, A.; Nakagawa, K.; Kobayashi, T., Selective Oxidation of Ethane to Acetaldehyde and Acrolein over Silica-Supported Vanadium Catalysts Using Oxygen as Oxidant. Journal of Catalysis 2000, 190, 215-227.
77. Le Bars, J.; Auroux, A.; Forissier, M.; Vedrine, J. C., Active Sites of V2O5/讪-Al2O3 catalysts in the Oxidative Dehydrogenation of Ethane. Journal of Catalysis 1996, 162, 250-259.
78. Faraldos, M.; Bañares, M. A.; Anderson, J. A.; Hu, H.; Wachs, I. E.; Fierro, J. L. S. G., Comparison of Silica-Supported MoO3and V2O5 catalysts in the Selective Partial Oxidation of Methane. Journal of Catalysis 1996, 160, 214-221.
79. Lou, Y.; Wang, H.; Zhang, Q.; Wang, Y., SBA-15-Supported Molybdenum Oxides as Efficient Catalysts for Selective Oxidation of Ethane to Formaldehyde and Acetaldehyde by Oxygen. Journal of Catalysis 2007, 247, 245-255.
80. Heracleous, E.; Lemonidou, A. A.; Lercher, J. A., Mechanistic Features of the Ethane Oxidative Dehydrogenation by in Situ FTIR Spectroscopy over a MoO3/Al2O3 Catalyst. Applied Catalysis A: General 2004, 264, 73-80.
81. Gao, J.; Zhou, D.; Wu, Y.; Wu, T., Direct Conversion of Ethane to Ethylene Oxide over NiAgYO Catalyst. Catalysis Communications 2013, 30, 51-55.
82. Wu, Y.; Yan, A.; He, Y.; Wu, B.; Wu, T., Ni-Ag-O as Catalyst for a Novel One-Step Reaction to Convert Ethane to Ethylene Oxide. Catalysis Today 2010, 158, 258-262.
83. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y., Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3, 399-404.
84. Reier, T.; Oezaslan, M.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis 2012, 2, 1765-1772.
85. Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y., Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. The Journal of Physical Chemistry Letters 2014, 5, 1636-1641.
86. Sun, W.; Song, Y.; Gong, X.-Q.; Cao, L.-m.; Yang, J., An Efficiently Tuned d-Orbital Occupation of IrO2 by Doping with Cu for Enhancing the Oxygen Evolution Reaction Activity. Chemical Science 2015, 6, 4993-4999.
87. Kadakia, K. S.; Jampani, P. H.; Velikokhatnyi, O. I.; Datta, M. K.; Park, S. K.; Hong, D. H.; Chung, S. J.; Kumta, P. N., Nanostructured F-Doped IrO2 Electro-Catalyst Powders for Pem Based Water Electrolysis. Journal of Power Sources 2014, 269, 855-865.
88. Song, Y.; Yang, J.; Gong, X.-Q., Prediction of Ir0.5M0.5O2 (M = Cr, Ru or Pb) Mixed Oxides as Active Catalysts for Oxygen Evolution Reaction from First-Principles Calculations. Topics in Catalysis 2015, 1-7.
89. Chandra, D.; Abe, N.; Takama, D.; Saito, K.; Yui, T.; Yagi, M., Open Pore Architecture of an Ordered Mesoporous IrO2 Thin Film for Highly Efficient Electrocatalytic Water Oxidation. ChemSusChem 2015, 8, 795-799.
90. Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J., Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces. Physical Chemistry Chemical Physics 2010, 12, 283-290.
91. Moser, M.; Mondelli, C.; Amrute, A. P.; Tazawa, A.; Teschner, D.; Schuster, M. E.; Klein-Hoffman, A.; López, N.; Schmidt, T.; Pérez-Ramírez, J., HCl Oxidation on IrO2-Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis 2013, 3, 2813-2822.
92. Kawar, R. K.; Chigare, P. S.; Patil, P. S., Substrate Temperature Dependent Structural, Optical and Electrical Properties of Spray Deposited Iridium Oxide Thin Films. Applied Surface Science 2003, 206, 90-101.
93. Nishio, K.; Watanabe, Y.; Tsuchiya, T., Preparation and Properties of Electrochromic Iridium Oxide Thin Film by Sol-Gel Process. Thin Solid Films 1999, 350, 96-100.
94. Jaw-Chyng, L.; Shuchi, C., Fabrication and Characterization of IrO2 -Based Microsensors for Fast Detection of Carbon Dioxide. Japanese Journal of Applied Physics 1997, 36, 2292.
95. Kinlen, P. J.; Heider, J. E.; Hubbard, D. E., A Solid-State PH Sensor Based on a Nafion-Coated Iridium Oxide Indicator Electrode and a Polymer-Based Silver Chloride Reference Electrode. Sensors and Actuators B: Chemical 1994, 22, 13-25.
96. Wipf, D. O.; Ge, F.; Spaine, T. W.; Baur, J. E., Microscopic Measurement of PH with Iridium Oxide Microelectrodes. Analytical Chemistry 2000, 72, 4921-4927.
97. Chen, Y. M.; Huang, Y. S.; Lee, K. Y.; Tsai, D. S.; Tiong, K. K., Characterization of IrO2/CNT Nanocomposites. Journal of Materials Science: Materials in Electronics 2011, 22, 890-894.
98. Over, H., Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews 2012, 112, 3356-3426.
99. He, Y. B.; Stierle, A.; Li, W. X.; Farkas, A.; Kasper, N.; Over, H., Oxidation of Ir(111): From O−Ir−O Trilayer to Bulk Oxide Formation. The Journal of Physical Chemistry C 2008, 112, 11946-11953.
100. Chung, W.-H.; Tsai, D.-S.; Fan, L.-J.; Yang, Y.-W.; Huang, Y.-S., Surface Oxides of Ir(111) Prepared by Gas-Phase Oxygen Atoms. Surface Science 2012, 606, 1965-1971.
101. Chung, W.-H.; Wang, C.-C.; Tsai, D.-S.; Jiang, J.-C.; Cheng, Y.-C.; Fan, L.-J.; Yang, Y.-W.; Huang, Y.-S., Deoxygenation of IrO2(110) Surface: Core-Level Spectroscopy and Density Functional Theory Calculation. Surface Science 2010, 604, 118-124.
102. Patil, P. S.; Chigare, P. S.; Sadale, S. B.; Seth, T.; Amalnerkar, D. P.; Kawar, R. K., Thickness-Dependent Properties of Sprayed Iridium Oxide Thin Films. Materials Chemistry and Physics 2003, 80, 667-675.
103. Fatih G. Sen, Alper Kinaci, Badri Narayanan, Michael J. Davis, Stephen K. Gray, Subramanian K. R. S. Sankaranarayanan, Maria K. Y. Chan, IrO2 Surface and Nanostructure Stability from First Principles and Variable Charge Force Field Calculations, 227th ECS Meeting (May 24-28, 2015).
104. Seets, D. C.; Reeves, C. T.; Ferguson, B. A.; Wheeler, M. C.; Mullins, C. B., Dissociative Chemisorption of Methane on Ir(111): Evidence for Direct and Trapping-Mediated Mechanisms. The Journal of Chemical Physics 1997, 107, 10229-10241.
105. Seets, D. C.; Wheeler, M. C.; Mullins, C. B., Mechanism of the Dissociative Chemisorption of Methane over Ir(110): Trapping-Mediated or Direct? Chemical Physics Letters 1997, 266, 431-436.
106. Soulen, S. A.; Madix, R. J., Alkane Activation Via Precursor-Mediated Dissociation on Ir(110). Surface Science 1995, 323, 1-5.
107. Kelly, D.; Weinberg, W. H., Trapping‐Mediated Dissociative Chemisorption of C3H8 and C3D8 on Ir(110). The Journal of Chemical Physics 1996, 105, 271-278.
108. Kelly, D.; Weinberg, W. H., Isotope Effects in Trapping‐Mediated Chemisorption of Ethane and Propane on Ir(110). The Journal of Chemical Physics 1996, 105, 3789-3793.
109. Kelly, D.; Weinberg, W. H., Direct Dissociative Chemisorption of Propane on Ir(110). The Journal of Chemical Physics 1996, 105, 11313-11318.
110. Kelly, D.; Weinberg, W. H., The Dissociative Chemisorption of Cyclopropane on Ir(110). The Journal of Chemical Physics 1996, 105, 7171-7176.
111. Weaver, J. F.; Devarajan, S. P.; Hakanoglu, C., Facile C−H Bond Cleavage and Deep Oxidation of Propane on a PdO(101) Thin Film. The Journal of Physical Chemistry C 2009, 113, 9773-9782.
112. Weaver, J. F.; Hinojosa Jr, J. A.; Hakanoglu, C.; Antony, A.; Hawkins, J. M.; Asthagiri, A., Precursor-Mediated Dissociation of n-Butane on a PdO(1 0 1) Thin Film. Catalysis Today 2011, 160, 213-227.
113. Weaver, J. F.; Hakanoglu, C.; Hawkins, J. M.; Asthagiri, A., Molecular Adsorption of Small Alkanes on a PdO(101) Thin Film: Evidence of 钋-Complex Formation. The Journal of Chemical Physics 2010, 132.
114. Hoyano, J. K.; McMaster, A. D.; Graham, W. A. G., Activation of Methane by Iridium Complexes. Journal of the American Chemical Society 1983, 105, 7190-7191.
115. Labinger, J. A.; Bercaw, J. E., Understanding and Exploiting C-H Bond Activation. Nature 2002, 417, 507-514.
116. Crabtree, R. H.; Mellea, M. F.; Mihelcic, J. M.; Quirk, J. M., Alkane Dehydrogenation by Iridium Complexes. Journal of the American Chemical Society 1982, 104, 107-113.
117. Wong-Foy, A. G.; Bhalla, G.; Liu, X. Y.; Periana, R. A., Alkane C−H Activation and Catalysis by an O-Donor Ligated Iridium Complex. Journal of the American Chemical Society 2003, 125, 14292-14293.
118. Crabtree, R. H., The Organometallic Chemistry of Alkanes. Chemical Reviews 1985, 85, 245-269.
119. Prasad, R., Electronic Structure of Materials; Taylor & Francis, 2013.
120. Lee, J. G., Computational Materials Science: An Introduction; Taylor & Francis, 2011.
121. Giustino, F., Materials Modelling Using Density Functional Theory: Properties and Predictions; Oxford University Press, 2014.
122. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136, B864-B871.
123. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140, A1133-A1138.
124. Perdew, J. P.; Zunger, A., Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B 1981, 23, 5048-5079.
125. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1992, 46, 6671-6687.
126. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B 1993, 48, 4978-4978.
127. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251-14269.
128. Kresse, G.; Furthmuller, J., Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6, 15-50.
129. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical Review B 1976, 13, 5188-5192.
130. Jónsson, H.; Mills, G.; Jacobsen, K. W., Nudged Elastic Band Method for Finding Minimum Energy Paths of Transition. In Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific: 1998; pp 385-404.
131. Mills, G.; Jónsson, H.; Schenter, G. K., Reversible Work Transition State Theory: Application to Dissociative Adsorption of Hydrogen. Surface Science 1995, 324, 305-337.
132. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. The Journal of Chemical Physics 2000, 113, 9901-9904.
133. Henkelman, G.; Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. The Journal of Chemical Physics 2000, 113, 9978-9985.
134. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
135. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B 1999, 59, 1758-1775.
136. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I., Van Der Waals Density Functional for General Geometries. Physical Review Letters 2004, 92, 246401.
137. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van Der Waals Density Functionals Applied to Solids. Physical Review B 2011, 83, 195131.
138. Sholl, D.; Steckel, J. A., Density Functional Theory: A Practical Introduction; John Wiley & Sons: Hoboken, NJ, 2011.
139. Groß, A., Adsorption on Surfaces. In Theoretical Surface Science, Springer Berlin Heidelberg: 2009; pp 101-163.
140. Momma, K.; Izumi, F., Vesta 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. Journal of Applied Crystallography 2011, 44, 1272-1276.
141. Hall, C.; Perutz, R. N., Transition Metal Alkane Complexes+. Chemical Reviews 1996, 96, 3125-3146.
142. Shilov, A. E.; Shul'pin, G. B., Activation of C−H Bonds by Metal Complexes. Chemical Reviews 1997, 97, 2879-2932.
143. Wang, C.-C.; Siao, S. S.; Jiang, J.-C., C–H Bond Activation of Methane via 钋–d Interaction on the IrO2(110) Surface: Density Functional Theory Study. Journal of Physical Chemistry C 2012, 116, 6367-6370.
144. Ciobîcǎ, I. M.; Frechard, F.; van Santen, R. A.; Kleyn, A. W.; Hafner, J., A DFT Study of Transition States for C−H Activation on the Ru(0001) Surface+. The Journal of Physical Chemistry B 2000, 104, 3364-3369.
145. Au, C.-T.; Ng, C.-F.; Liao, M.-S., Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A Theoretical Study. Journal of Catalysis 1999, 185, 12-22.
146. Kokalj, A.; Bonini, N.; Sbraccia, C.; de Gironcoli, S.; Baroni, S., Engineering the Reactivity of Metal Catalysts:  A Model Study of Methane Dehydrogenation on Rh(111). Journal of the American Chemical Society 2004, 126, 16732-16733.
147. Xing, B.; Pang, X.-Y.; Wang, G.-C., C–H Bond Activation of Methane on Clean and Oxygen Pre-Covered Metals: A Systematic Theoretical Study. Journal of Catalysis 2011, 282, 74-82.
148. Gajewski, G.; Pao, C.-W., Ab Initio Calculations of the Reaction Pathways for Methane Decomposition over the Cu (111) Surface. The Journal of Chemical Physics 2011, 135, 064707.
149. Kinnunen, N. M.; Hirvi, J. T.; Suvanto, M.; Pakkanen, T. A., Role of the Interface between Pd and PdO in Methane Dissociation. The Journal of Physical Chemistry C 2011, 115, 19197-19202.
150. Zhang, C. J.; Hu, P., The Possibility of Single C–H Bond Activation in CH4 on a MoO3-Supported Pt Catalyst: A Density Functional Theory Study. The Journal of Chemical Physics 2002, 116, 4281-4285.
151. Blanco-Rey, M.; Jenkins, S. J., Methane Dissociation and Methyl Diffusion on PdO{100}. The Journal of Chemical Physics 2009, 130, 014705.
152. Weaver, J. F., Surface Chemistry of Late Transition Metal Oxides. Chemical Reviews 2013, 113, 4164-4215.
153. Carrasco, J.; Liu, W.; Michaelides, A.; Tkatchenko, A., Insight into the Description of Van Der Waals Forces for Benzene Adsorption on Transition Metal (111) Surfaces. The Journal of Chemical Physics 2014, 140, 084704.
154. Antony, A.; Asthagiri, A.; Weaver, J. F., Pathways and Kinetics of Methane and Ethane C–H Bond Cleavage on PdO(101). The Journal of Chemical Physics 2013, 139.
155. Antony, A.; Hakanoglu, C.; Asthagiri, A.; Weaver, J. F., Dispersion-Corrected Density Functional Theory Calculations of the Molecular Binding of n-Alkanes on Pd(111) and PdO(101). The Journal of Chemical Physics 2012, 136.
156. Wang, C.-C.; Siao, S. S.; Jiang, J.-C., Density Functional Theory Study of NHx (x = 0−3) and N2 Adsorption on IrO2(110) Surfaces. Journal of Physical Chemistry C 2010, 114, 18588-18593.
157. Wang, C.-C.; Yang, Y.-J.; Jiang, J.-C., DFT Study of NHx (x = 0−3) Adsorption on RuO2(110) Surfaces. The Journal of Physical Chemistry C 2009, 113, 2816-2821.
158. Ye, J.; Liu, C.; Ge, Q., A DFT Study of Methanol Dehydrogenation on the PdIn(110) Surface. Physical Chemistry Chemical Physics 2012, 14, 16660-16667.
159. Zheng, C.; Apeloig, Y.; Hoffmann, R., Bonding and Coupling of C1 Fragments on Metal Surfaces. Journal of the American Chemical Society 1988, 110, 749-774.
160. Van Grootel, P. W.; Van Santen, R. A.; Hensen, E. J. M., Methane Dissociation on High and Low Indices Rh Surfaces. The Journal of Physical Chemistry C 2011, 115, 13027-13034.
161. Bunnik, B. S.; Kramer, G. J., Energetics of Methane Dissociative Adsorption on Rh{111} from DFT Calculations. Journal of Catalysis 2006, 242, 309-318.
162. Mueller, J. E.; Van Duin, A. C. T.; Goddard, W. A., Structures, Energetics, and Reaction Barriers for CHx Bound to the Nickel (111) Surface. The Journal of Physical Chemistry C 2009, 113, 20290-20306.
163. Yuan, S.; Meng, L.; Wang, J., Greatly Improved Methane Dehydrogenation via Ni Adsorbed Cu(100) Surface. The Journal of Physical Chemistry C 2013, 117, 14796-14803.
164. Ande, C. K.; Elliott, S. D.; Kessels, W. M. M., First-Principles Investigation of C–H Bond Scission and Formation Reactions in Ethane, Ethene, and Ethyne Adsorbed on Ru(0001). The Journal of Physical Chemistry C 2014, 118, 26683-26694.
165. Lo, J. M. H.; Ziegler, T., Theoretical Studies of the Formation and Reactivity of C2 Hydrocarbon Species on the Fe(100) Surface. The Journal of Physical Chemistry C 2007, 111, 13149-13162.
166. Li, M.; Guo, W.; Jiang, R.; Zhao, L.; Lu, X.; Zhu, H.; Fu, D.; Shan, H., Mechanism of the Ethylene Conversion to Ethylidyne on Rh(111): A Density Functional Investigation. The Journal of Physical Chemistry C 2010, 114, 8440-8448.
167. Dai, G.-L.; Liu, Z.-P.; Wang, W.-N.; Lu, J.; Fan, K.-N., Oxidative Dehydrogenation of Ethane over V2O5 (001):  A Periodic Density Functional Theory Study. The Journal of Physical Chemistry C 2008, 112, 3719-3725.
168. Lopez, N.; Novell-Leruth, G., Rules for Selectivity in Oxidation Processes on RuO2(110). Physical Chemistry Chemical Physics 2010, 12, 12217-12222.
169. Viitala, M.; Cramariuc, O.; Rantala, T. T.; Golovanov, V., Small Hydrocarbon Adsorbates on SnO2(1 1 0) Surfaces: Density Functional Theory Study. Surface Science 2008, 602, 3038-3042.
170. Pham, T. L. M.; Leggesse, E. G.; Jiang, J. C., Ethylene Formation by Methane Dehydrogenation and C-C Coupling Reaction on a Stoichiometric IrO2 (110) Surface - a Density Functional Theory Investigation. Catalysis Science & Technology 2015.
171. Erlekam, U.; Paulus, U. A.; Wang, Y.; Bonzel, H. P.; Jacobi, K.; Ertl, G., Adsorption of Methane and Ethane on RuO2(110) Surfaces. Zeitschrift für Physikalische Chemie 2005, 219, 891–903.
172. Antony, A.; Asthagiri, A.; Weaver, J. F., Pathways and Kinetics of Methane and Ethane C–H Bond Cleavage on PdO(101). The Journal of Chemical Physics 2013, 139, 104702.
173. Paulus, U. A.; Wang, Y.; Bonzel, H. P.; Jacobi, K.; Ertl, G., Adsorption and Interaction of Ethylene on RuO2(110) Surfaces+. The Journal of Physical Chemistry B 2005, 109, 2139-2148.
174. Paulus, U. A.; Wang, Y.; Bonzel, H. P.; Jacobi, K.; Ertl, G., Adsorption of Ethylene on Stoichiometric RuO2(110). Surface Science 2004, 566–568, Part 2, 989-994.
175. Kubota, J.; Ichihara, S.; Kondo, J. N.; Domen, K.; Hirose, C., Reversibly Adsorbed π-Bonded Ethene on Pt(111) Surfaces by Infrared Reflection Absorption Spectroscopy. Langmuir 1996, 12, 1926-1927.
176. Essen, J. M.; Haubrich, J.; Becker, C.; Wandelt, K., Adsorption of Ethene Pt(111) and Ordered PtxSn/Pt(111) Surface Alloys: A Comparative Hreels and DFT Investigation. Surface Science 2007, 601, 3472-3480.
177. Ohtani, T.; Kubota, J.; Kondo, J. N.; Hirose, C.; Domen, K., Suppression of Formation of Ethylidyne on Pt(111) by Reversibly Adsorbed di-钋-Bonded Ethylene Studied by in Situ IRAS. Surface Science 1998, 415, L983-L987.
178. Okada, T.; Kim, Y.; Sainoo, Y.; Komeda, T.; Trenary, M.; Kawai, M., Coexistence and Interconversion of di-钋 and π-Bonded Ethylene on the Pt(111) and Pd(110) Surfaces. The Journal of Physical Chemistry Letters 2011, 2, 2263-2266.
179. Sock, M.; Eichler, A.; Surnev, S.; Andersen, J. N.; Klötzer, B.; Hayek, K.; Ramsey, M. G.; Netzer, F. P., High-Resolution Electron Spectroscopy of Different Adsorption States of Ethylene on Pd(111). Surface Science 2003, 545, 122-136.
180. Weinelt, M.; Huber, W.; Zebisch, P.; Steinrück, H. P.; Pabst, M.; Rösch, N., The Electronic Structure of Ethylene on Ni(110): An Experimental and Theoretical Study. Surface Science 1992, 271, 539-554.
181. Bus, E.; Ramaker, D. E.; van Bokhoven, J. A., Structure of Ethene Adsorption Sites on Supported Metal Catalysts from in Situ XANES Analysis. Journal of the American Chemical Society 2007, 129, 8094-8102.
182. Shen, J.; Hill, J.; Watwe, R.; Podkolzin, S. G.; Dumesic, J. A., Ethylene Adsorption on Pt/Au/SiO2 Catalysts. Catalysis Letters 1999, 60, 1-9.
183. Becker, C.; Pelster, T.; Tanemura, M.; Breitbach, J.; Wandelt, K., Ethene Adsorption on Pt3Cu(111). Surface Science 1999, 433–435, 822-826.
184. Shukri, G.; Kasai, H., Density Functional Theory Study of Ethylene Adsorption on Clean Anatase TiO2 (001) Surface. Surface Science 2014, 619, 59-66.

無法下載圖示 全文公開日期 2020/08/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2020/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE