簡易檢索 / 詳目顯示

研究生: 周芸巧
Yun-Chiao Chou
論文名稱: 厚膜光阻黏結劑製備與顯影特性之研究
Study on Preparation of Binder of Thick Film Photoresist and its Effect on Development Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
林文福
wen-fu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 厚膜負型光阻高深寬比黃光微影製程IC封裝
外文關鍵詞: Thick-film photoresist, high aspect ratio, photo-lithography, IC packaging
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

厚膜光阻 (Thick-film photoresist)可用於製作高深寬比的結構,普遍廣泛應用於LIGA微機械加工技術,製作MEMS微電機系統元件或微結構等。負型厚膜光阻可應用於積體電路後段IC封裝,利用厚膜光阻形成高深寬比的結構圖案,產生大尺寸金屬凸塊作為中心封裝,使局部設備冷卻以提高封裝的穩定性。
本研究分成兩個部份,第一部份先以苯乙烯 (Styrene)、異戊二烯 (Isoprene)、甲基丙烯酸 (Methacrylic acid)等單體,依不同比例利用自由基聚合法 (Free radical polymerization)合成,共聚合成出不同高分子樹脂後,探討其物理特性,如分子量、玻璃轉化溫度、熱分解溫度、黏度、酸價等,並分析其官能基與化學結構等;第二部份將合成樹脂添加光起始劑 (Photoinitiator)以及其他添加劑等製備成負型光阻,進行黃光微影製程,以旋轉塗佈光阻於晶圓表面,單次塗佈達膜厚30微米,去除大部分溶劑後,以波長315~400 nm (Broad band)進行UV固化程序,最後以鹼性顯影液沖洗,使用光學顯微鏡與電子顯微鏡觀察光阻顯影效果與光阻形態。
經由微影程序,發現合成高分子平均分子量愈低,並添加增塑型樹脂時,有助於顯影的速度。在最適化條件下,可得膜厚30微米的負型光阻,圖形線寬最小達50微米。

關鍵字: 厚膜負型光阻、高深寬比、黃光微影製程、IC封裝


Thick-film photoresist is used to create the high-aspect-ratio (HAR) structure and it can be widely and commonly used in LIGA (Lithographie, Galvanoformung, Abformung) technology to fabricate HAR microstructures for MEMS (microelectromechanical systems). This photoresist can be applied in integrated circuit packaging process. A large size metal bumps, prepared with using thick-film photoresist, is often employed at center of package in order to cool the local structures. It is found to enhance the productivity of packaging process.
There are two parts in this study. In the first part, the polymer, used as binder for photoresist, were synthesized via free-radical polymerization with using styrene, isoprene, methacrylic acid and other monomers. The effects of preparation parameters on molecular weight (MW), glass transition temperature (Tg), thermal decomposition temperature (Td), viscosity and the acid value of the prepared binders were be investigated in detail. The functional groups and chemical structures were also analyzed systematically. The photoinitiator and other additives were added into the prepared polymer to synthesize the negative-type photoresist in the second-part work. The negative-type photoresist was coated on the wafer by spin coating process, where the film thickness was adjusted by spin speed to match the specification (30 μm) for photo-lithography process. Most of solvent was removed from the photoresist after soft-baking. The dried film, then, was UV-cured under radiation at wavelength from 315 to 400 nm (broad band), with different exposure. The pattern was obtained with using alkaline developers. Finally, the integrity of pattern and photoresist morphology were further observed by the microscope and the SEM.

In the photo-lithography process, the results indicated that the synthetic binder with lower average molecular weight and adding the toughener resin exhibit the more rapid development rate. The resolution of the prepared negative-type photoresist with film thickness of 30 μm could reach line width dimension of 50 μm.

Key words: Thick-film photoresist, high aspect ratio, photo-lithography, IC packaging

摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1研究背景 1 1-2研究目的 2 第二章 文獻回顧 4 2-1積體電路微影製程 4 2-2光阻劑的介紹 6 2-3自由基聚合 7 2-3-1起始劑種類 9 2-3-2影響反應因素 10 2-4壓克力樹脂 10 2-5厚膜光阻應用 11 2-6 IC封裝技術 14 第三章 實驗材料與方法 15 3-1實驗設計與方法 15 3-1-1自由基聚合反應合成樹脂 16 3-1-2配置負型光阻劑 17 3-1-3微影製程 18 3-2實驗藥品 20 3-3實驗儀器 21 第四章 結果與討論 27 4-1樹脂不同聚合條件之固含量與產率探討 27 4-1-1聚合條件-起始劑濃度及反應時間 27 4-1-2聚合條件-起始劑濃度及樹脂P比例 30 4-1-3聚合條件-單體比例及添加P 2 % 33 4-1-4聚合條件-起始劑濃度及添加P 2 %之影響 35 4-1-5聚合條件-添加P以及L比例之影響 38 4-2不同條件聚合樹脂之物理特性 41 4-2-1平均分子量 41 4-2-2黏度 48 4-2-3酸價 49 4-2-4熱穩定性 51 4-2-5化學結構鑑定與分析 58 4-3黃光微影製程 59 4-3-1顯影時間 59 4-3-2曝光量與解析度 64 4-3-3橫切面觀察 73 第五章 結論與未來展望 75 5-1結論 75 5-2未來展望 76 參考文獻 78 附錄 81

[1] C.-H. Lin, G.-B. Lee, B.-W. Chang, G.-L. Chang, A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist, Journal of Micromechanics and Microengineering, 12 (2002) 590-597.
[2] F.-G. Tseng, C.-S. Yu, High aspect ratio ultrathick micro-stencil by JSR THB-430N negative UV photoresist, Sensors and Actuators A: Physical, 97 (2002) 764-770.
[3] R. Vempati Srinivasa, K. Vaidyanathan, Y. Seung Wook, A.O.T. Andrew, A thick photoresist process for advanced wafer level packaging applications using JSR THB-151N negative tone UV photoresist, Journal of Micromechanics and Microengineering, 16 (2006) 1841-1846.
[4] J.S. Lee, S.I. Hong, Synthesis of acrylic rosin derivatives and application as negative photoresist, European Polymer Journal, 38 (2002) 387-392.
[5] C.-K. Lee, T.-M. Don, D.-J. Lin, C.-C. Chen, L.-P. Cheng, Characterization of acrylic copolymers applied in negative-type photoresist via a ternary composition diagram, Journal of Applied Polymer Science, 109 (2008) 467-474.
[6] S. Kubota, Y. Yamawaki, T. Moriwaki, S. Eto, Synthesis and characterization of positive photosensitive polyimide precursors, Polymer Engineering & Science, 29 (1989) 950-953.
[7] H. Jinbo, Y. Yamashita, M. Sadamura, Subhalf‐micron patterning of negative working resist by using new phase‐shifting masks, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 8 (1990) 1745-1748.
[8] K. Matyjaszewski, Controlled radical polymerization, Current Opinion in Solid State and Materials Science, 1 (1996) 769-776.
[9] J. Lee, T. Aoai, S.i. Kondo, N. Miyagawa, S. Takahara, T. Yamaoka, Negative-working photoresist of methacrylate polymers based on the transesterification of the 2-hydroxyethyl group in the presence of an acid, Journal of Polymer Science Part A: Polymer Chemistry, 40 (2002) 1858-1867.
[10] J. Liu, X. Zheng, H. Li, R. Liu, Q. Mu, X. Liu, Synthesis of novel branched UV-curable methacrylate copolymer and its application in negative photoresist, Polymer Bulletin, 72 (2014) 523-533.
[11] K. Maeda, K. Nakano, S. Iwasa, E. Hasegawa, Function-integrated alicyclic polymer for ArF chemically amplified resists, 1997, pp. 55-64.
[12] S. Bor-Yuan, H. Jui-Tang, H. Tai-Yuan, L. Kun-Pei, C. Chang-Pin, High resolution x-ray micromachining using SU-8 resist, Journal of Micromechanics and Microengineering, 13 (2003) 708-713.
[13] T. Lan, J.M. Torkelson, Methacrylate-based polymer films useful in lithographic applications exhibit different glass transition temperature-confinement effects at high and low molecular weight, Polymer, 55 (2014) 1249-1258.
[14] E. Koukharenko, M. Kraft, G. Ensell, N. Hollinshead, A comparative study of different thick photoresists for MEMS applications, Journal of Materials Science: Materials in Electronics, 16 (2005) 741-747.
[15] K.Y. Lee, N. LaBianca, S.A. Rishton, S. Zolgharnain, J.D. Gelorme, J. Shaw, T.H.P. Chang, Micromachining applications of a high resolution ultrathick photoresist, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 13 (1995) 3012-3016.
[16] H.C. Ewan, F.M. David, SU-8 thick photoresist processing as a functional material for MEMS applications, Journal of Micromechanics and Microengineering, 12 (2002) 368-374.
[17] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, SU-8: a low-cost negative resist for MEMS, Journal of Micromechanics and Microengineering, 7 (1997) 121-124.
[18] 杜逸虹,聚合體學,三民書局, (1978)。
[19] Christophers, S. Brazel., Stephen, L. Rosen. (2012) Fundamental principles of polymeric materials, 3rd edition.
[20] Ben G. Streetman, Sanjay K. Banerjee. (2017) Soild state electronic devices, 7th edition.
[21]翁詩甫,徐詩庄,傅立葉變換紅外線光譜分析,化學工業出版社,第三版 (2016)。
[22] S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, SU8‐Silver Photosensitive Nanocomposite, Advanced Engineering Materials, 6 (2004) 719-724.
[23] S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, Conductive SU8 photoresist for microfabrication, Advanced Functional Materials, 15 (2005) 1511-1516.

無法下載圖示 全文公開日期 2022/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE