簡易檢索 / 詳目顯示

研究生: LUH JUNI ASRINI
LUH JUNI ASRINI
論文名稱: 結合變量和屬性之製程管制模式 - 監控具馬可夫與自相關特性之製程平均數
A Process Control Model Combining Variable and Attribute Inspection for Monitoring the Mean of Autocorrelated Processes with Markov Chain Property
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 蔣明晃
Jiang Minghuang
羅明琇
SONIA MING-SHIOW LO
葉瑞徽
Robert Ruey Huei Yeh
黃忠偉
Allen Jong-Woei Whang
王孔政
Kung-Jeng Wang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 90
中文關鍵詞: 組合管制圖自相關過程變數管制圖馬可夫鏈屬性管制圖
外文關鍵詞: combined control chart, autocorrelated processes, variable chart, multivariate processes, attribute chart, Markov chain approach
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為解決多變量和自相關製程管制之困難,本論文建立一種新穎的管制圖 AR-XkA。 本研究根據平均遊程 (ARL) 指標,並進行 AR-XkA 管制圖的表現與現有管制圖(即 CCCgroup 和 R-MMCE管制圖)之比較。研究結果顯示,AR-XkA 管制圖優於 CCCgroup 管制圖,特別是在 ARL1 的表現,顯示其對製程平均值變化的敏感度增強,尤其是對於變數 X1A。 然而,對於較大的 k 值(k ≥ 50),ARL0 接近 370,顯示檢測失控現象的表現下降。 與 R-MMCE 管制圖的比較分析顯示,對於較大的 k 值,AR-XkA管制圖在 ARL1 方面表現較差,但表現出與 CCCgroup 管制圖類似的性能。 值得注意的是,AR-XkA 管制圖因其採樣有效性而備受關注,使品質管理人員能夠簡化品質控制流程。本研究所提出的管制圖透過在 XkA 管制圖方案定義的周期內,實施屬性檢查以減少採樣時間。這種品質管制策略消除了在整個過程中進行連續變數檢查的需要,對於持續時間較長的製程尤其有利。


    This dissertation introduces a novel control chart, the AR-XkA, designed to address challenges associated with multivariate and autocorrelated processes. The study evaluates the performance of the AR-XkA control chart in comparison to established charts, namely the CCCgroup and R-MMCE charts, based on the Average Run Length (ARL) metrics. Results indicate that the AR-XkA chart outperforms the CCCgroup chart, particularly in terms of ARL1, showcasing enhanced sensitivity to shifts in process mean, especially for the variable X1A. However, for larger values of k (k ≥ 50), ARL0 approaches 370, indicating a decrease in performance in detecting out-of-control conditions. Comparative analysis with the R-MMCE chart reveals that the AR-XkA chart performs worse in terms of ARL1 for larger k values but exhibits performance similar to the CCCgroup chart. Notably, the AR-XkA control chart is highlighted for its effectiveness in sampling, enabling operators to streamline the quality control process. The proposed control chart allows operators to reduce sampling time by implementing attribute inspections within cycles defined by the XkA control chart scheme. This strategic approach eliminates the need for continuous variable inspections throughout the entire process, particularly advantageous for processes with extended durations.

    TABLE OF CONTENTS 摘要 4 ABSTRACT 5 ACKNOWLEDGEMENTS 6 TABLE OF CONTENTS 7 LIST OF TABLES 10 LIST OF FIGURES 11 CHAPTER 1 12 1.1. Research background and motivation 12 1.2. Research objectives 16 1.3. Research framework 16 1.4. Dissertation outlines 18 CHAPTER 2 19 2.1 Statistical process chart of multivariate auto-correlated processes 19 2.2. Control chart for autocorrelated processes 21 2.3. Mixed multivariate CUSUM-EWMA (MMCE) control chart 22 2.4. Multioutput least square support vector regression (MLS-SVR) model 23 2.5. Cumulative count of conforming chart 25 2.6 Performance evaluation 29 2.7 Research gap and opportunities 29 CHAPTER 3 31 3.1. Design of residual-based mixed multivariate CUSUM-EWMA (R-MMCE) control chart 31 3.2. Construction of the R-MMCE control chart 33 3.3 Performance evaluation process 35 3.4. Simulation studies 37 3.5. Input of MLS-SVR model and hyper-parameters selection 38 3.6. The UCL of the proposed R-MMCE control chart 39 3.7 ARLs performance of the proposed R-MMCE control chart compared with MCUSUM and MEWMA control chart 45 3.8. Summary 48 CHAPTER 4 50 4.1 Analysis of statistical parameters and design of CCCgroup chart for autocorrelated processes 50 4.2. Optimal design of ARL by proposed CCCgroup chart against autocorrelated processes 55 4.3. Performance analysis 56 4.4. Summary 56 CHAPTER 5 58 5.1. Analysis of statistical parameters and design of proposed combined control chart for autocorrelated processes 58 5.2. Proposed control chart for monitoring the shift of mean 64 5.3. Performance analysis of the proposed control chart 65 5.4. Numerical illustrations 69 5.5. Summary 72 CHAPTER 6 73 6.1. Conclusion 73 6.2. Managerial implications and contributions 73 6.3. Limitation and future research 76 References 78

    References
    Ajadi, J. O., & Riaz, M. (2017). Mixed multivariate EWMA-CUSUM control charts for an improved process monitoring. Communications in Statistics - Theory and Methods, 46(14), 6980–6993. https://doi.org/10.1080/03610926.2016.1139132
    Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., Khaliq, A., Faheem, M., & Ahmad, A. (2019). CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy, 189, 116319. https://doi.org/10.1016/j.energy.2019.116319
    Ali, S., Pievatolo, A., & Göb, R. (2016). An Overview of Control Charts for High-quality Processes. Quality and Reliability Engineering International, 32(7), 2171–2189. https://doi.org/10.1002/qre.1957
    Alwan, L. C., & Roberts, H. V. (1988). Time-Series Modeling for Statistical Process Control Time-Series Mode ing for Statistics Process Contro. Journal of Business & Economic Statistics, 6(1), 87–95. https://doi.org/http://dx.doi.org/10.1080/07350015.1988.10509640
    Atienza, O. O., Tang, L. C., & Ang, B. W. (2002). A CUSUM scheme for autocorrelated observations. Journal of Quality Technology, 34(2), 187–199. https://doi.org/10.1080/00224065.2002.11980145
    Calvin, T. W. (1983). Quality Control Techniques for “Zero Defects”. Technical Paper - Society of Manufacturing Engineers, C(3), 323–328. https://doi.org/10.1016/0026-2714(84)90075-1
    Chen, H., & Cheng, Y. (2009). Designing over(X, -) charts for known autocorrelations and unknown marginal distribution. European Journal of Operational Research, 198(2), 520–529. https://doi.org/10.1016/j.ejor.2008.09.007
    Chiang, J. Y., Lio, Y. L., & Tsai, T. R. (2017). MEWMA Control Chart and Process Capability Indices for Simple Linear Profiles with Within-profile Autocorrelation. In Quality and Reliability Engineering International (Vol. 33, Issue 5, pp. 1083–1094). https://doi.org/10.1002/qre.2101
    Costa, A. F. B., & MacHado, M. A. G. (2011). Variable parameter and double sampling X̄ charts in the presence of correlation: The Markov chain approach. International Journal of Production Economics, 130(2), 224–229. https://doi.org/10.1016/j.ijpe.2010.12.021
    Dai, W., Mujeeb, A., Erdt, M., & Sourin, A. (2020). Soldering defect detection in automatic optical inspection. Advanced Engineering Informatics, 43(November 2019), 101004. https://doi.org/10.1016/j.aei.2019.101004
    Du, S., Huang, D., & Lv, J. (2013). Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines. Computers and Industrial Engineering, 66(4), 683–695. https://doi.org/10.1016/j.cie.2013.09.012
    Ebayyeh, A. A. R. M. A., & Mousavi, A. (2020). A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry. IEEE Access, 8, 183192–183271. https://doi.org/10.1109/ACCESS.2020.3029127
    ElMaraghy, H., Monostori, L., Schuh, G., & ElMaraghy, W. (2021). Evolution and future of manufacturing systems. CIRP Annals, 70(2), 635–658. https://doi.org/10.1016/j.cirp.2021.05.008
    Elvira N. Loredo, D. J. & C. M. B. (2002). Model‐based control chart for autoregressive and correlated data.pdf. Quality and Reliability Engineering International, 18, 489–496.
    Fallah Nezhad, M. S., & Akhavan Niaki, S. T. (2010). A new monitoring design for uni-variate statistical quality control charts. Information Sciences, 180(6), 1051–1059. https://doi.org/10.1016/j.ins.2009.11.033
    Flores, M., Naya, S., Fernández-Casal, R., Zaragoza, S., Raña, P., & Tarrío-Saavedra, J. (2020). Constructing a control chart using functional data. Mathematics, 8(1), 1–26. https://doi.org/10.3390/math8010058
    Franco, B. C., Celano, G., Castagliola, P., & Costa, A. F. B. (2014). Economic design of Shewhart control charts for monitoring autocorrelated data with skip sampling strategies. International Journal of Production Economics, 151, 121–130. https://doi.org/10.1016/j.ijpe.2014.02.008
    Franco, B. C., Costa, A. F. B., & MacHado, M. A. G. (2012). Economic-statistical design of the X chart used to control a wandering process mean using genetic algorithm. Expert Systems with Applications, 39(17), 12961–12967. https://doi.org/10.1016/j.eswa.2012.05.034
    Haq, A., & Khoo, M. B. C. (2019). New adaptive EWMA control charts for monitoring univariate and multivariate coefficient of variation. Computers and Industrial Engineering, 131, 28–40. https://doi.org/10.1016/j.cie.2019.03.027
    He, Z., Wang, Z., Tsung, F., & Shang, Y. (2016). A control scheme for autocorrelated bivariate binomial data. Computers and Industrial Engineering, 98, 350–359. https://doi.org/10.1016/j.cie.2016.06.001
    Huang, S. H., & Pan, Y. C. (2015). Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66, 1–10. https://doi.org/10.1016/j.compind.2014.10.006
    Hung, C.-W., Jiang, J.-G., P. Wu, H.-H., & Mao, W.-L. (2018). An Automated Optical Inspection system for a tube inner circumference state identification. Proceedings of International Conference on Artificial Life and Robotics, 23(4), 415–418. https://doi.org/10.5954/icarob.2018.os8-1
    Issam, B. K., & Mohamed, L. (2008). Support vector regression based residual MCUSUM control chart for autocorrelated process. Applied Mathematics and Computation, 201(1–2), 565–574. https://doi.org/10.1016/j.amc.2007.12.059
    Jarrett, J. E., & Pan, X. (2007). The quality control chart for monitoring multivariate autocorrelated processes. Computational Statistics and Data Analysis, 51(8), 3862–3870. https://doi.org/10.1016/j.csda.2006.01.020
    Kang, J. H., Yu, J., & Kim, S. B. (2016). Adaptive nonparametric control chart for time-varying and multimodal processes. Journal of Process Control, 37, 34–45. https://doi.org/10.1016/j.jprocont.2015.11.005
    Khediri, I. Ben, Weihs, C., & Limam, M. (2010). Support Vector Regression control charts for multivariate nonlinear autocorrelated processes. Chemometrics and Intelligent Laboratory Systems, 103(1), 76–81. https://doi.org/10.1016/j.chemolab.2010.05.021
    Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., & Chen, X. (2021). Digital twins-based smart manufacturing system design in Industry 4.0: A review. Journal of Manufacturing Systems, 60(May), 119–137. https://doi.org/10.1016/j.jmsy.2021.05.011
    Leoni, R. C., Costa, A. F. B., & Machado, M. A. G. (2015). The effect of the autocorrelation on the performance of the T2 chart. European Journal of Operational Research, 247(1), 155–165. https://doi.org/10.1016/j.ejor.2015.05.077
    Li, C., Mukherjee, A., Su, Q., & Xie, M. (2016). Optimal design of a distribution-free quality control scheme for cost-efficient monitoring of unknown location. International Journal of Production Research, 54(24), 7259–7273. https://doi.org/10.1080/00207543.2016.1173254
    Li, J., Jeske, D. R., Zhou, Y., & Zhang, X. (2019). A wavelet-based nonparametric CUSUM control chart for autocorrelated processes with applications to network surveillance. In Quality and Reliability Engineering International (Vol. 35, Issue 2, pp. 644–658). https://doi.org/10.1002/qre.2427
    Li, Y., Pan, E., & Xiao, Y. (2020). On autoregressive model selection for the exponentially weighted moving average control chart of residuals in monitoring the mean of autocorrelated processes. Quality and Reliability Engineering International, 36(7), 2351–2369. https://doi.org/10.1002/qre.2701
    Liang, W., Pu, X., & Xiang, D. (2017). A distribution-free multivariate CUSUM control chart using dynamic control limits. Journal of Applied Statistics, 44(11), 2075–2093. https://doi.org/10.1080/02664763.2016.1247784
    Liu, H., Yu, Y., Sun, F., & Gu, J. (2017). Visual – Tactile Fusion for Object Recognition. IEEE Transactions on Automation Science and Engineering, 14(2), 996–1008.
    Moraes, D. A. O., Oliveira, F. L. P., Duczmal, L. H., & Cruz, F. R. B. (2016). Comparing the inertial effect of MEWMA and multivariate sliding window schemes with confidence control charts. International Journal of Advanced Manufacturing Technology, 84(5–8), 1457–1470. https://doi.org/10.1007/s00170-015-7822-7
    Mowery, D. C. (2010). The influence of market demand upon innovation: a critical review of some recent empirical studies. Inside the Black Box, 8, 193–242. https://doi.org/10.1017/cbo9780511611940.011
    Nguyen, H. Du, Nadi, A. A., Tran, K. D., Castagliola, P., Celano, G., & Tran, K. P. (2023). The Shewhart-type RZ control chart for monitoring the ratio of autocorrelated variables. International Journal of Production Research, 61(20), 6746–6771. https://doi.org/10.1080/00207543.2022.2137594
    Nujoom, R., Mohammed, A., & Wang, Q. (2018). A sustainable manufacturing system design: A fuzzy multi-objective optimization model. Environmental Science and Pollution Research, 25(25), 24535–24547. https://doi.org/10.1007/s11356-017-9787-6
    Ojer, M., Serrano, I., Saiz, F., Barandiaran, I., Gil, I., Aguinaga, D., & Alejandro, D. (2020). Real-time automatic optical system to assist operators in the assembling of electronic components. International Journal of Advanced Manufacturing Technology, 107(5–6), 2261–2275. https://doi.org/10.1007/s00170-020-05125-z
    Park, J., & Jun, C. H. (2015). A new multivariate EWMA control chart via multiple testing. Journal of Process Control, 26, 51–55. https://doi.org/10.1016/j.jprocont.2015.01.007
    Prieto, F., Redarce, T., Lepage, R., & Boulanger, P. (2002). An Automated Inspection System. 917–925.
    Psarakis, S. (2015). Adaptive Control Charts: Recent Developments and Extensions. Quality and Reliability Engineering International, 31(7), 1265–1280. https://doi.org/10.1002/qre.1850
    Quinino, R. C., Cruz, F. R. B., & Quinino, V. B. (2021). Control chart for process mean monitoring combining variable and attribute inspections. Computers and Industrial Engineering, 152(October 2020), 106996. https://doi.org/10.1016/j.cie.2020.106996
    Quintero-Arteaga, C., Peñabaena-Niebles, R., Vélez, J. I., & Jubiz-Diaz, M. (2022). Statistical design of an adaptive synthetic X¯$ar{X}$ control chart for autocorrelated processes. Quality and Reliability Engineering International, 38(5), 2475–2500. https://doi.org/10.1002/qre.3086
    Psarakis S. & G. E. A. Papaleonida. (2007). SPC Procedures for Monitoring Autocorrelated. Quality Technology & Quantitative Management, 4(4), 501–540. https://doi.org/10.1080/16843703.2007.11673168
    Reynolds, M. R., & Lu, C. W. (1997). Control charts for monitoring processes with autocorrelated data. Nonlinear Analysis, Theory, Methods and Applications, 30(7), 4059–4067. https://doi.org/10.1016/S0362-546X(97)00011-4
    Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239–250. https://doi.org/10.1080/00401706.1959.10489860
    Sabahno, H., Castagliola, P., & Amiri, A. (2020). An adaptive variable-parameters scheme for the simultaneous monitoring of the mean and variability of an autocorrelated multivariate normal process. Journal of Statistical Computation and Simulation, 90(8), 1430–1465. https://doi.org/10.1080/00949655.2020.1730373
    Sabahno, H., & Celano, G. (2023). Monitoring the multivariate coefficient of variation in presence of autocorrelation with variable parameters control charts. Quality Technology and Quantitative Management, 20(2), 184–210. https://doi.org/10.1080/16843703.2022.2075193
    Sampaio, E. S., Ho, L. L., & De Medeirosc, P. G. (2014). A combined npx X¯ control chart to monitor the process mean in a two-stage sampling. Quality and Reliability Engineering International, 30(7), 1003–1013. https://doi.org/10.1002/qre.1528
    Schmookler, J. (2016). Changes in Industry and in the State of Knowledge as Determinants of Industrial Invention. In The Rate and Direction of Inventive Activity. https://doi.org/10.1515/9781400879762-007
    Simões, F. D., Leoni, R. C., MacHado, M. A. G., & Costa, A. F. B. (2016). Synthetic charts to control bivariate processes with autocorrelated data. Computers and Industrial Engineering, 97, 15–25. https://doi.org/10.1016/j.cie.2016.04.005
    Steiner, S. H., & Jock MacKay, R. (2004). Effective Monitoring of Processes with Parts Per Million Defective. A Hard Problem! Frontiers in Statistical Quality Control 7, 140–149. https://doi.org/10.1007/978-3-7908-2674-6_10
    Sun, J., Zhou, S., & Veeramani, D. (2023). A neural network-based control chart for monitoring and interpreting autocorrelated multivariate processes using layer-wise relevance propagation. Quality Engineering, 35(1), 33–47. https://doi.org/10.1080/08982112.2022.2087041
    Travaglioni, M., Piscitelli, G., & Petrillo, A. (2020). Smart-manufacturing-systems-and-applied-industrial-technologies-for-a-sustainable-industry-A-systematic-literature-review2020Applied-Sciences-Switzerland.pdf.
    Vanhatalo, E., & Kulahci, M. (2015). The Effect of Autocorrelation on the Hotelling T2 Control Chart. Quality and Reliability Engineering International, 31(8), 1779–1796. https://doi.org/10.1002/qre.1717
    Wang, J., Li, Y., Gao, R. X., & Zhang, F. (2022). Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability. Journal of Manufacturing Systems, 63(April), 381–391. https://doi.org/10.1016/j.jmsy.2022.04.004
    Wang, K. J., & Asrini, L. J. (2022). Deep learning-based automatic optical inspection system empowered by online multivariate autocorrelated process control. International Journal of Advanced Manufacturing Technology, 120(9–10), 6143–6162. https://doi.org/10.1007/s00170-022-09161-9
    Wang, K. J., & Asrini, L. J. (2023). Multivariate auto-correlated process control by a residual-based mixed CUSUM-EWMA model. Quality and Reliability Engineering International, 39(4), 1120–1142. https://doi.org/10.1002/qre.3278
    Xie, M., & Goh, T. N. (1993). Improvement Detection by Control Charts for High Yield Processes. International Journal of Quality & Reliability Management, 10(7). https://doi.org/10.1108/02656719310043779
    Xu, S., An, X., Qiao, X., Zhu, L., & Li, L. (2013). Multi-output least-squares support vector regression machines. Pattern Recognition Letters, 34(9), 1078–1084. https://doi.org/10.1016/j.patrec.2013.01.015
    Yao, Y., Chakraborti, S., Yang, X., Parton, J., Lewis, D., & Hudnall, M. (2023). Phase I control chart for individual autocorrelated data: application to prescription opioid monitoring. Journal of Quality Technology, 55(3), 302–317. https://doi.org/10.1080/00224065.2022.2139783
    Zaman, B., Abbas, N., Riaz, M., & Lee, M. H. (2016). Mixed CUSUM-EWMA chart for monitoring process dispersion. International Journal of Advanced Manufacturing Technology, 86(9–12), 3025–3039. https://doi.org/10.1007/s00170-016-8411-0
    Zaman, B., Lee, M. H., Riaz, M., & Abujiya, M. R. (2020a). An improved process monitoring by mixed multivariate memory control charts: An application in wind turbine field. Computers and Industrial Engineering, 142(January), 106343. https://doi.org/10.1016/j.cie.2020.106343
    Zaman, B., Lee, M. H., Riaz, M., & Abujiya, M. R. (2020b). An improved process monitoring by mixed multivariate memory control charts: An application in wind turbine field. Computers and Industrial Engineering, 142(September 2019), 106343. https://doi.org/10.1016/j.cie.2020.106343
    Zhou, Q., Zou, C., Wang, Z., & Jiang, W. (2012). Likelihood-based EWMA charts for monitoring poisson count data with time-varying sample sizes. Journal of the American Statistical Association, 107(499), 1049–1062. https://doi.org/10.1080/01621459.2012.682811
    Zhou, W., Cheng, C., & Zheng, Z. (2019). Optimal design of an attribute control chart for monitoring the mean of autocorrelated processes. Computers and Industrial Engineering, 137(January). https://doi.org/10.1016/j.cie.2019.106081
    Zou, C., & Tsung, F. (2010). Likelihood ratio-based distribution-free EWMA control charts. Journal of Quality Technology, 42(2), 174–196. https://doi.org/10.1080/00224065.2010.11917815

    無法下載圖示 全文公開日期 2034/02/05 (校內網路)
    全文公開日期 2034/02/05 (校外網路)
    全文公開日期 2034/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE