簡易檢索 / 詳目顯示

研究生: 盧鑫理
Shin-li Lu
論文名稱: 廣泛加權移動平均管制圖在自我相關製程下之設計
Design GWMA Control Charts in the Presence of Autocorrelated Processes
指導教授: 徐世輝
Shey-huei Sheu
口試委員: 孫智陸
Juh-luh Sun
王國雄
Kuo-hsiung Wang
蘇朝墩
Chao-ton Su
巫木誠
none
陳仁義
none
謝光進
Kong-king Shieh
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 104
中文關鍵詞: 指數加權移動平均管制圖廣泛加權移動平均管制圖自我相關平均連串長度一階自我迴歸模型
外文關鍵詞: EWMA control chart, Generally weighted moving average control chart, Autocorrelation, Average run length, AR(1) process with random error
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,使用管制圖來監控製程,假設製程觀測值是獨立的分配。事實上,很多製程的產品不是具有關聯性就是具有自我相關性,因此,所獲得的觀測值是自我相關而非獨立的。在這種情狀下,利用獨立而非相關的假設去監控製程是不適當的。當相關性存在觀測值間,管制圖的表現可能造成某種程度的影響。特別是,產生較高的錯誤警訊。為了降低錯誤警訊的頻率和增加管制圖的偵測能力,本研究主要針對當觀測資料有顯著自我相關時,監控其製程的平均數與變異數的微小偏移。
    在處理自我相關的資料時,一般有兩種方法建立其管制圖。其一,視觀測值為統計量製作廣泛加權移動平均(GWMA)管制圖並調整管制界線來監控一階自我迴歸(AR(1))模型加上一個隨機誤差項的相關性製程。透過數值的模擬來衡量觀測值的指數加權移動平均(EWMA)與GWMA管制圖的平均連串長度(ARL) 。透過ARL的比較顯示,觀測值的GWMA在低度相關時,偵測製程變異所需的時間比在高度相關時來的短。在偵測小偏移的製程平均數與變異數方
    面,觀測值的GWMA比EWMA管制圖來的敏感。
    此外,另一種方法是選取適當的時間序列AR(1)模型加上一個隨機誤差項,視配適模型後的殘差值為統計量來監控相關製程的平均數與變異數。殘差值的EWMA與GWMA管制圖被運用來監控製程的平均數與變異數並衡量其平均連串長度的差異。數值模擬的結果也顯示,在偵測小偏移的製程平均數與變異數時,殘差值的GWMA比EWMA管制圖敏感。


    Traditionally, using a control chart to monitor a process assumes that process observations are normally and independently distributed. In fact, for many processes, products are either connected or autocorrelated and, consequently, obtained observations are autocorrelative rather than independent. In this scenario, applying an independence assumption instead of the autocorrelation for process monitoring is unsuitable. When autocorrelation exists between observations, the performance of control charts may cause dramatic influence. Specifically, a high number of false alarms signals are generated. In order to decrease the frequency of false alarms and increase detection ability of control chart, the main problem addressed in this study is to monitor small shifts in the process mean and/or variance for which
    observational data meet significant autocorrelation.
    Two general approaches to developing control charts can be adopted in cases of autocorrelation. One, a generally weighted moving average (GWMA) control chart of observations for monitoring a process is introduced and the control limits adjusted for the autocorrelated observations in which the observations can be modeled as a first-order autoregressive (AR(1)) process with a random error. Simulation is utilized to evaluate the average run length (ARL) of an exponentially weighted moving average (EWMA) and GWMA control charts of observations. Numerous comparisons of ARLs indicate that the GWMA control chart of observations requires less time to detect various shifts at low levels of autocorrelation than those at high of autocorrelation. The GWMA control chart of observations is more sensitive than the EWMA control chart of observations for detecting small shifts in a process mean
    and/or variance.
    Additionally, another method is discussed to monitor the mean and/or variance of autocorrelated processes based on the residuals from the forecast values of a AR(1) process with a random error. The EWMA and GWMA control charts of residuals used to monitor simultaneously the process mean and/or variance are considered to evaluate how ARLs differ in each case. A simulation result also indicated that the GWMA control scheme is more sensitive than the EWMA control scheme to small shifts in an autocorrelated process mean and/or variance.

    摘要.................................................................Ⅰ Abstract…………………………………………………………………..………….Ⅱ 致謝…………………………………………………………………………..……...Ⅳ Table of Contents…………………………………………………………………..Ⅴ List of Notations………………………………………….……………….………Ⅶ List of Figures……………………………………………………………………..Ⅸ List of Tables…………………………………………..………………………….Ⅹ Chapter 1. Introduction………………………………………………….………1 1.1 Background……………………………………………………….......……1 1.2 Literature Review……………………………………………….….…....3 1.3 Scope and Purpose…………………………………………………....…..5 Chapter 2. Description of the GWMA Control Chart…………………………7 Chapter 3. The GWMA Control Chart based on Observations …………….10 3.1 Introduction……………………………………………………………....10 3.2 The AR(1) Process with Random Error…………………………...…..12 3.3 Constructing GWMA Control Charts of Observations……………..…14 3.4 Performance Measurements and Comparison…………………………...16 3.5 ARL Profiles of a GWMA Control Chart of Observations……………31 3.6 An Example……………………………………………………………......38 3.7 Conclusions……………………………………………...……………....41 Chapter 4. The GWMA Control Chart Based on Residuals……………….…43 4.1 Introduction………………………………………………...…………...43 4.2 Modeling GWMA Control Charts of Residuals………………………...45 4.2.1 Shifts in the process mean……………………………………….47 4.2.2 Shifts in the process variance………………………………...47 4.3 Measuring the Performance of Control Charts…………………….…49 4.4 An Example……………………………………………………………......62 4.5 Composite Shewhart-GWMA Control Charts of Residuals…………….65 4.6 Conclusions…………………………………………………………….....69 Chapter 5. The Measurement of GWMA Control Charts based on Observations and Residuals………………………………………………………………...........71 5.1 Comparison of GWMA Schemes of Observations and Residuals……..71 5.2 An Example……………………………………………………………......78 Chapter 6. Conclusions and Future Works……………………………………84 References……………………………………………………………………………86 作者簡介…………………………………………………………………..………..91

    [1] Alwan, L.C. “Effects of Autocorrelation on Control Chart Performance,”
    Communication in Statistics: Theory and Methods, vol.21: pp.1025-1049, 1992.

    [2] Alwan, L.C. and Roberts, H.V. “Time-Series Modeling for Statistical Process Control,” Journal of Business and Economic Statistics, vol.6: pp.87-95, 1988.

    [3] Bagshaw, M. and Johnson, R.A. “The Effect of Serial Correlation on the
    Performance of CUSUM Tests II,” Technometrics, vol.17: pp.73-80, 1975.

    [4] Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

    [5] Chandrasekaran, s., English, J.R. and Disney, R.L. “Modeling and Analysis of EWMA Control Schemes with Variance-Adjusted Control Limits,” IIE
    Transactions, vol.27: pp.282-290, 1995.

    [6] Crowder, S.V. “Computation of ARL for Combined Individual Measurement and Moving Range Charts,” Journal of Quality Technology, vol.9: pp.98-102, 1987a.

    [7] Crowder, S.V. “Average Run Lengths of Exponentially Weighted Moving Moving Control Charts,” Journal of Quality Technology, vol.19: pp.161-164,
    1987b.

    [8] Crowder, S.V. “A Simple Method for Studying Run-Length Distributions of Exponentially Weighted Moving Average Charts,”Technometrics, vol.29:
    pp.401-407 , 1987c.

    [9] Crowder, S.V. “Design of Exponentially Weighted Moving Average Schemes,”
    Journal of Quality Technology, vol.21: pp.155-161, 1989.

    [10] Crowder, S.V. and Hamilton, M.D. “An EWMA for Monitoring a Process
    Standard Deviation,” Journal of Quality Technology, vol.24: pp.12-21, 1992.

    [11] Domangue, R. and Patch, S.C. “Some Omnibus Exponentially Weighted Moving Averages Statistical Process Monitoring Schemes,” Technometrics, vol.33: pp.299-313, 1991.

    [12] Gan, F.F. “Computing the Percentage Points of the Run Length Distribution of an Exponentially Weighted Moving Average Control Chart,” Journal of Quality Technology, vol.23: pp.359-365, 1991.

    [13] Gan, F.F. “Joint Monitoring of Process Mean and Variance Using Exponentially Weighted Moving Average Control Charts,” Technometrics, vol.37(4): pp. 446-453, 1995.

    [14] Goldsmith, P.L. and Whitfield, H. “Average Run Lengths in Cumulative Chart Quality Control Schemes,” Technometrics, vol.3: pp.11-20, 1961.

    [15] Harris, T.J. and Ross, W.H. “Statistical Process Control Procedures for Correlated Observations,” The Canadian Journal of Chemical Engineering, vol.69: pp. 48-57, 1991.

    [16] Hunter, J.S. “The Exponentially Weighted Moving Average,” Journal of Quality Technology, vol.18: pp.203-210, 1986.

    [17] Johnson, R.A and Bagshaw, M. “The Effect of Serial Correlation on the
    Performance of CUSUM Tests,” Technometrics, vol.16: pp.103-112, 1974.

    [18] Kramer, T.J. and Schmid, W. “Control Charts for Time Series,” Nonlinear
    Analysis, vol.30: pp.4007-4016, 1997.

    [19] Lu, C.W. and Reynolds, M.R.Jr. “EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes,” Journal of Quality Technology, vol.31: pp.
    166-188, 1999a.

    [20] Lu, C.W. and Reynolds, M.R.Jr. “Control Charts for Monitoring the Mean and variance of Autocorrelated Processes,” Journal of Quality Technology, vol.31: pp. 259-274, 1999b.

    [21] Lucas, J.M. and Saccucci, M.S. “Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements,” Technometrics, vol.32: pp.1-
    12, 1990.

    [22] Longnecker, M.T. and Ryan, T.P. “Charting Correlated Process Data,” Technical Report No. 166, Department of Statistics, Texas A&M University, College Station, TX. 1992.

    [23] Maragah, H.D. and Woodall, W.H. “The Effect of Autocorrelation on the Retrospective X-Chart,” Journal of Statistical Computation and Simulation,
    vol.40: pp.29-42, 1992.

    [24] MacGregor, F. and Harris, J. “The Exponential Weighted Moving Variance," Journal of Quality Technology, vol.25: pp.106-118, 1993.

    [25] Montgomery, D.C. and Mastrangelo, C.M. “Some Statistical Process Control Methods for Autocorrelation Data,” Journal of Quality Technology, vol.23: pp.
    179-193, 1991.

    [26] Ng, C.H. and Case, K.E. “Development and Evaluation of Control Charts Using Exponentially Weighted Moving Average,” Journal of Quality Technology, vol.21: pp.242-250, 1989.

    [27] Padgett, C.S., Thombs, L.A. and Padgett, W.J. “On the -risk for Shewhart Control Charts,” Communications in Statistics-Simulation and Computation,vol.21: pp.1125-1147, 1992.

    [28] Reynolds, M.R.Jr., Arnold, J.C. and Baik, J.W. "Variable Sampling Interval Charts in the Presence of Correlation,” Journal of Quality Technology, vol.28:pp.12-30, 1996.

    [29] Roberts, S.W. “Control Chart Tests Based on Geometric Moving Average,”
    Technometrics, vol.42: pp.97-102, 1959.

    [30] Roberts, S.W. “A Comparison of Some Control Chart Procedures,”
    Technometrics, vol.8: pp.411-430, 1966.

    [31] Robinson, P.B. and Ho, T.Y. “Average Run Lengths of Geometric Moving Average Charts by Numerical Methods,” Technometrics, vol.20: pp.154-162,
    1978.

    [32] Saccucci, M.S. and Lucas, J.M. “Average Run Lengths for Exponentially Weighted Moving Average Control Schemes Using the Markov Chain
    Approach,” Journal of Quality Technology, vol.22: pp.154-162, 1990.

    [33] Schmid, W. “On the Run Length of a Shewhart Chart for Correlated Data,”
    Statistical Papers, vol.36: pp.111-130, 1995.

    [34] Schmid, W. “Cusum Control Schemes for Gaussian Processes,” Statistical
    Papers, vol.38: pp.191-217, 1997a.

    [35] Schmid, W. “On EWMA Charts for Time Series,” in Frontiers of Statistical Quality Control edited by H.J. Lenz and P.Th. Wilrich. Physica-Verlag,Heidelburg., 1997b.

    [36] Sheu, S.H. and Griffith, W.S. “Optimal Number of Minimal Repairs Before Replacement of a System Subject to Shocks,” Naval Research Logistics, vol.43:
    pp.319-333, 1996.

    [37] Sheu, S.H. “A Generalized Age and Block Replacement of a System Subject to Shocks,” European Journal of Operation research, vol.108: pp.345-362, 1998.

    [38] Sheu, S.H. “Extended Optimal Replacement Model for Deteriorating Systems,”European Journal of Operation research, vol.112: pp.503-516, 1999.

    [39] Sheu, S.H. and Lin, T.C. “The Generally Weighted Moving Average Control Chart for Detecting Small Shifts in the Process Mean,” Quality Engineering,
    vol.16: pp.209-231, 2003.

    [40] Superville, C.R. and Adams, B.M. “An Evaluation of Forecast-Based Quality Control Schemes,” Communications in Statistics-Simulation and Computation,vol.23: pp.645-661, 1994.

    [41] Sweet, A.L. “Control Charts Using Coupled Exponentially Weighted Moving
    Averages,” IIE Transactions, Vol.18: pp.26-33, 1986.

    [42] VanBrackle, L.N. and Reynolds, M.R.Jr. “EWMA and CUSUM Control Charts in the Presence of Correlation,” Communications in Statistics-Simulation and
    Computation, vol.26: pp.979-1008, 1997.

    [43] VanderWeil, S.A. “Modeling Processes That Wander Using Moving Average
    Models,” Technometrics, vol.38: pp.139-151, 1996.

    [44] Vasilopoulos, A.V. and Stamboulis, A.P. “Modification of Control Chart Limits in the Presence of Data Correlation,” Journal of Quality Technology, vol.10: pp. 20-30, 1978.

    [45] Wardell, D.G., Moskowitz, H. and Plante, R.D. “Control Charts in the Presence of Data Correlation,” Management Science, vol.38: pp.1084-1105, 1992.

    [46] Wardell, D.G., Moskowitz, H. and Plante, R.D. “Run Length Distributions of Special-Cause Control Charts for Correlated Processes,” Technometrics, vol.36:pp.3-17, 1994.

    [47] Wortham, A.W. and Ringer, L.J. “Control via Exponential Smoothing,” The
    Logistics Review, vol.7(32): pp.33-40, 1971.

    [48] Yashchin, E. “Performance of CUSUM Control Schemes for Serially Correlated Observations,” Technometrics, vol.35: pp.37-52, 1993.

    [49] Zhang, N.F. “A Statistical Control Chart for Stationary Process Data,”
    Technometrics, vol.40: pp.24-38, 1998.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE