簡易檢索 / 詳目顯示

研究生: 李國平
Guo-ping Li
論文名稱: 多級軸流式風扇之流場模擬與實驗
Computational and Experimental Investigations on A Multi-stage Axial Fan
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 孫珍理
Chen-Li Sun
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 203
中文關鍵詞: 多級軸流式風扇風扇性能數值模擬
外文關鍵詞: Multi-stage Axial Fan, Fan-performance, Numerical simulation
相關次數: 點閱:313下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用伺服器之企業、機關與實驗室與日漸增,散熱問題的處理在伺服器系統的設計範圍裡佔有舉足輕重的地位。機架式架構之伺服器屬於扁平而狹長的空間,在眾多電子元件稠密的分佈在受限的空間中,欲克服高系統阻抗(System impedance)而能順利將熱源帶出,高風量、高靜壓的多級軸流式風扇(Mutil-stage Axial Fan)是必須的。本研究以此使用於伺服器系統散熱上之多級軸流扇為標的風扇,並使用計算流體動力學(Computational Fluid Dynamics, CFD)之商用軟體STAR-CD,利用傳統模擬方法與自行研發的一套新式模擬方法來模擬此一風扇之性能曲線。藉由兩種模擬方法所計算出的風扇流場,探討風扇內部葉片間及出入口流場在軸向與徑向平面的特性。新式模擬方法的計算結果與AMCA 210標準程序實驗結果相較,模擬得到之靜壓與流量誤差皆在3%以內,而傳統模擬方法之最大誤差則高達53%。使用新式模擬方法於此複雜幾何之多級軸流扇上,可以準確預測其性能曲線,證明此方法之可行性。


    This study uses the STAR-CD, a commercial code of Computational Fluid Dynamics, to calculate and analyze the flow field characteristics and performance curve of a mutil-stage axial fan which has complicated geometry. A new computational approach as distinct from the conventional simulation method, which is widely adopted by investigators, is developed. The new simulation method uses the “added impedance” method to improve the prediction of the pressure, flow rate, and velocity distribution. The deviation of the calculated fan performance curve by using the new simulation method from the experimental results can attain a level less than 3%, which is a drastic improvement over that obtained by using the conventional method. The highest inaccuracy of the conventional method is even exceed 53%. It proved the new simulation method can be reliably applied to the mutil-stage axial fan which has complicated geomerty.

    摘要i Abstractii 誌謝iii 目錄iv 符號索引viii 表圖索引xi 第一章 緒論1 1.1 研究動機1 1.2 文獻回顧2 1.3 研究目的與方法8 第二章 風扇之性能實驗與數值計算方法10 2.1 實驗方法10 2.1.1 實驗設備與儀器10 2.2 性能計算方法12 2.2.1 風量計算12 2.2.2 風壓計算16 2.2.3 功率及效率18 2.3 數值計算方法19 2.3.1 計算流力軟體的簡介19 2.4 統御方程式21 2.4.1 穩態模式(Steady state)21 2.4.2 暫態模式(Transient)23 2.5 紊流方法23 2.6 數值模擬26 2.6.1 網格及其生成方法概述26 2.6.1.1 網格類型26 2.6.1.2 網格之生成26 2.6.2 計算網格27 2.6.3 邊界條件與初始條件29 2.6.4 Conventional與DFR出口邊界條件設定30 2.6.5 網格獨立性分析30 2.7 數值方法31 2.7.1 離散化方程式31 2.7.2 穩態模式與暫態模式數值方法33 2.7.3 SIMPLE與PISO解法理論33 2.7.4 收斂標準39 第三章 標的風扇之實驗及計算性能曲線41 3.1 風扇結構41 3.2 風扇性能42 3.2.1 AVC DB03828B12U之風扇性能曲線42 3.2.2 AVC DB04056B12U之風扇性能曲線42 3.3 風扇實驗性能曲線與計算結果之比較43 第四章 傳統模擬方法之流場與壓力場44 4.1 Conventional計算方法之結果與討論44 4.1.1 Conventional計算方法之性能曲線結果44 4.2 葉片間之流場結構45 4.2.1 相對速度流場45 4.2.1.1 取像於Ps = 0 mmAq, Qmax45 4.2.1.2 取像於失速區46 4.2.1.3 取像於Ps,max, Q = 0 CMM47 4.2.2 絕對速度流場48 4.2.2.1 取像於Ps = 0 mmAq, Qmax48 4.2.2.2 取像於失速區48 4.2.2.3 取像於Ps,max, Q = 0 CMM49 4.3 徑向平面之葉片間流場結構50 4.3.1 取像截面於z/H = 050 4.3.2 取像截面於z/H = 0.351 4.3.3 取像截面於z/H = 0.651 4.3.4 取像截面於z/H = 0.852 4.3.5 取像截面於z/H = 152 4.4 風扇入口之徑向流場結構53 4.5 風扇出口之徑向流場結構54 4.6 風扇入口與出口之軸向流場結構54 4.6.1 取像於(Ps, Q)=(0 mmAq, 0.767 CMM)54 4.6.2 取像於(Ps, Q)=(50.5 mmAq, 0.088CMM)55 4.6.3 取像於(Ps, Q)=(54.3 mmAq, 0CMM)56 4.7 葉片間之壓力分佈56 4.7.1 取像於Ps = 0 mmAq, Qmax56 4.7.2 取像於失速區57 4.7.3 取像於Ps,max, Q = 0 CMM57 4.8 徑向平面之葉片間壓力分佈58 4.8.1 取像截面於z/H = 058 4.8.2 取像截面於z/H = 0.358 4.8.3 取像截面於z/H = 0.659 4.8.4 取像截面於z/H = 0.859 4.8.5 取像截面於z/H = 160 4.9 阻抗區前徑向平面之壓力分佈60 4.10 徑向平面之葉片間渦度分佈61 4.10.1 取像截面於z/H = 061 4.10.2 取像截面於z/H = 0.361 4.10.3 取像截面於z/H = 0.662 4.10.4 取像截面於z/H = 0.862 4.10.5 取像截面於z/H = 162 第五章 DFR模擬方法之流場與壓力場63 5.1 DFR計算方法之結果與討論63 5.1.1 DFR計算方法之性能曲線結果63 5.2 葉片間之流場結構64 5.2.1 相對速度流場64 5.2.1.1 取像於Ps = 0 mmAq, Qmax64 5.2.1.2 取像於失速區64 5.2.1.3 取像於Ps,max, Q = 0 CMM65 5.2.2 絕對速度流場66 5.2.2.1 取像於Ps = 0 mmAq, Qmax66 5.2.2.2 取像於失速區66 5.2.2.3 取像於Ps,max, Q = 0 CMM67 5.3 徑向平面之葉片間流場結構67 5.3.1 取像截面於z/H = 067 5.3.2 取像截面於z/H = 0.368 5.3.3 取像截面於z/H = 0.669 5.3.4 取像截面於z/H = 0.869 5.3.5 取像截面於z/H = 170 5.4 風扇入口之徑向流場結構70 5.5 風扇出口之徑向流場結構71 5.6 風扇入口與出口之軸向流場結構71 5.6.1 取像於(Ps, Q)=(0 mmAq, 0.828 CMM)71 5.6.2 取像於(Ps, Q)=(49.93 mmAq, 0.128CMM)72 5.6.3 取像於(Ps, Q)=(54.44 mmAq, 0CMM)72 5.7 葉片間之壓力分佈73 5.7.1 取像於Ps = 0 mmAq, Qmax73 5.7.2 取像於失速區73 5.7.3 取像於Ps,max, Q = 0 CMM74 5.8 徑向平面之葉片間壓力分佈74 5.8.1 取像截面於z/H = 074 5.8.2 取像截面於z/H = 0.374 5.8.3 取像截面於z/H = 0.675 5.8.4 取像截面於z/H = 0.875 5.8.5 取像截面於z/H = 176 5.9 阻抗區前徑向平面之壓力分佈76 5.10 徑向平面之葉片間渦度分佈77 5.10.1 取像截面於z/H = 077 5.10.2 取像截面於z/H = 0.377 5.10.3 取像截面於z/H = 0.677 5.10.4 取像截面於z/H = 0.877 5.10.5 取像截面於z/H = 178 第六章 討論79 6.1 Conventional與 DFR Static grid之結果比較79 6.1.1 葉片間流場結構79 6.1.2 風扇入、出口軸向平面流場80 6.1.3 阻抗區前之徑向平面壓力81 第七章 結論82 參考文獻83

    [1]Kondo, L. and Aoki, Y., “Noise Reduction in Turbo Fans for Air Conditioners”, Technical Review-Mitsubishi Heavy Industries, Vol. 26, No. 3, pp. 173-179, (1989).
    [2]Eck, B., Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans (translate and edited by Azad, R. S., and Scott, D. R.), Pergamon Press, Oxford, New York, (1973).
    [3]張瑞釗、許忠福、施良璘、張起領, 渦輪葉片參數設計法, 中山科學研究院第一研究所報告, (1986)
    [4]陳世雄, 動力渦輪機組規劃設計, 工研院研究計畫報告, (1995)
    [5]Dang, T. and Isgro, V., “Euler-Based Inverse Method for Turbomechine Blades Part1: Two-Dimensional Cascades”, AIAA Journal, Vol. 33, No. 12, pp. 2309-2315, (1995).
    [6]Damle, S., and Dang, T. “Practical Use of Three-Dimensional Inverse Method for Compressor Blade Design”, ASME Journal of Turbomachinery, Vol. 121, pp. 321-325, (1999).
    [7]Pierret, S., and Van den Braembussche, R. A., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network”, ASME Journal of Turbomachinery, Vol. 121, No. 2, pp. 326-332, (1998).
    [8]Bleier, F. P., Fan Handbook, McGraw-Hill, New York, (1998).
    [9]Wright, T., Fluid Machinery: Performance, Analysis, and Design, CRC Press, Boca Raton, New York, (1999).
    [10]Mizuno, T. and Kikuchi, K., “Characteristic of Axial Flow Fan with Diagonal Flow Hub,” SAE Transcations, Vol. 99, No. 6, pp. 49-55, (1990).
    [11]Zhu, X. C., Lin, W. L., and Du, Z. H., “Experimental and Numerical Investigation of the Flow Field in the Tip Region of an Axial Ventilation Fan,” Journal of Fluids Engineering, Vol. 127, March, pp. 299-307, (2005)

    [12]Jang, C. M., Fukano, T., and Furukawa, M., “Effects of the Tip Clearance on Vortical Flow and Its Relation to Noise in an Axial Flow Fan,” JSME International Journal, Series B, Vol. 46, No. 3, pp. 356-365, (2003)
    [13]Jang, C. M., Sato, D., and Fukano, T., “Experimental Analysis on tip Leakage and Wake Flow in an Axial Flow Fan according to Flow Rates,” Journal of Fluids Engineering, Vol. 127, March, pp. 322-329, (2005)
    [14]Meyer, C. J. and Kroger, D. G., “Numerical Simulation of the Flow Field in the Vicinity of an Axial Flow Fan,” International Journal For Numerical Methods In Fluids, Vol. 36, pp. 947-969, (2001)
    [15]Lee, G. H., Baek, J. H., and Myung, H. J., “Structure of tip leakage flow in a forward-swept axial-Flow Fan,” Flow, Turbulence and Combustion, Vol. 70, No. 1-4, pp. 241-265 (2003)
    [16]Lewis, R. I., “Turbomachinery Performance Analysis”, John Wiley & Sons, Inc., New York, (1996).
    [17]Wallis, R. A., “Axial Flow Fans & Ducts”, John Wiley & Sons, Inc., New York, (1983).
    [18]簡煥然、施銘銓, 軸流風扇性能測試技術與扇葉技術, 機械工業雜誌, pp. 269-288 , (1992)
    [19]Downie, R. J., Thompson, M. C. and Wallis, R. A., “An Engineering Approach to Blade Design for Low to Medium Pressure Rise Rotor-Only Axial Fans”, Experimental Thermal and Fluid Science, Vol. 6, No. 4, pp. 376-401, (1993).
    [20]Sandra, V. S., Rafael, B. T., Carlos, S. M., and Eduardo, B. M., “Total Unsteadiness Downstream of an Axial Flow Fan with Variable Pitch Blades,” Journal of Fluids Engineering, Vol. 124, No. 1, March, pp. 280-283, (2002)
    [21]Inoue, M., Kuroumaru, M., and Ando, Y., “Tip Clearance Flow In Axial Flow Impellers at Low Flow Rate”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transaction of The Japan, Vol. 56, No. 526, pp.1960-1965, (1990)
    [22]Venter, S. J. and Kroger, D. G., “The Effect of Tip Clearance on The Performance of an Axial Flow Fan”, Energy Convers. Mgmt, Vol. 33, No. 2, pp.89-97, (2002)
    [23]Kaneko, K., Setoguchi, T.,Nakano, T. and Inoue, M., “Effect of Blade Surface Roughness on Performances of Axial Flow Fans with Different Blade Cambers” , Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 50, No. 459, pp.2812-2817, (1984)
    [24]Gbadebo, S. A., Hynes, T. P. and Cumpsty, N. A., “Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors”, ASME Journal of Turbomachinery, Vol. 126, Oct. 2004, pp.455-463.
    [25]Longhouse, R.E., “Vortex Shedding Noise of Low Tip Speed, Axial Flow Fans”, Journal of Sound and Vibration, Vol. 53, No. 1, pp.25-46, (1997)
    [26]吳玉林, 陳慶光, 劉樹紅, 通風機和壓縮機, 北京清華大學出版社, (2005)
    [27]Yen, S. C., and Lin, F. T., “Exit Flow Field and Performance of Axial Flow Fans,” Journal of Fluids Engineering, Vol. 128, March, pp. 332-340, (2006)
    [28]Wernet, M. P., “Development of Digital Particle Imaging Velocimetry for Use in Turbomachinery,” Experiments in Fluids, Vol. 28, No. 2, pp. 97-115, (2000)
    [29]Wernet, M. P., Zante, D. V., Strazisar, T. J., John, W. T., and Prahst, P. S., “Characterization of the Tip Clearance Flow in an Axial Compressor Using 3-D Digital PIV,” Experiments in Fluids, Vol. 39, No. 4, pp. 743-753, (2005)
    [30]Estevadeordal, J., Gogineni, S., Copenhaver, W., Bloch, G., and Brendel, M., “Flow Field in a Low-Speed Axial Fan: DPIV Investigation,” Experimental Thermal and Fluid Science, Vol. 23, No. 1, pp. 11-21, (2000)
    [31]Lee, S. J., Choi, J., and Yoon, J. H., “Phase-Averaged Velocity Field Measurements of Flow Around an Isolated Axial-Fan Model,” Journal of Fluids Engineering, Vol. 125, No. 6, November, pp. 1067-1072, (2003)

    [32]Yoon, J. H., and Lee, S. J., “Stereoscopic PIV Measurements of Flow Behind an Isolated Low-Speed Axial-Fan,” Experimental Thermal and Fluid Science, Vol. 28, No. 8, pp. 791-802, (2004)
    [33]Grimes, R., and Davies, M., “Air Flow and Heat Transfer in Fan Cooled Electronic Systems,” Journal of Electronic Packaging, Vol. 126, March, pp. 124-134, (2004)
    [34]Publication 210, “Laboratory Method of Testing Fans for Rating,” Air Movement and Control Association,Inc., (1995)
    [35]Yakhot, V., and Orszag, S. A., “Renormalization Group Analysis of Turbulence I. Basic Theory,” Journal of Scientific Computing, Vol. 1, No. 1, May, pp. 3-51, (1986)
    [36]Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G., “Development of Turbulence Models for Shear Flows by a Double Expansion Technique,” Phys. Fluids, series A, Vol. 4, No. 7, pp. 1510-1520, (1992)
    [37]王福均, 計算流體動力學分析-CFD軟件原理與應用, 北京清華大學出版社, (2004)
    [38]Warsi, Z. V. A., “Conservation Form of the Navier-Stokes Equations in General Nonsteady Coordinates,” AIAA Journal,Vol. 19, pp. 240-242.
    [39]張益豪, 六面體網格產生方法之研究, 國立成功大學機械工程學系所碩士論文, (2004)
    [40]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, (1995)
    [41]Patankar S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806, (1972)
    [42]林重安, 軸流式風扇之流場模擬與實驗, 國立台灣科技大學機械工程研究所碩士論文, (2007)
    [43]陳麗如, 軸流式風扇葉片攻角與扭角對風扇性能與流場的影響, 國立台灣科技大學機械工程研究所碩士論文, (2008)

    [44]Perry, A. E., and Steiner, T. R., “Large-scale Vortex Structures in Turbulent Wakes Behind Bluff Bodies. Part 1. Vortex Formation Processes,” Journal of Fluid Mech., Vol. 174 , pp. 233-270, (1987)

    QR CODE