簡易檢索 / 詳目顯示

研究生: 何宗運
Zong-Yun He
論文名稱: 金屬鹽類熱裂解機制及連續式製程之研究
Research on The Pyrolysis Mechanism of Metal salts and Continuous Process
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 李豪業
黃安婗
劉祐誠
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 72
中文關鍵詞: 金屬鹽類氧化鎳熱裂解螺桿反應器
外文關鍵詞: Metal salts, Nickel oxide, pyrolysis, Screw reactor
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來半導體業的高度蓬勃發展,晶圓廠大量使用食人魚酸洗滌晶圓,從而產生廢硫酸,目前常透過將酸鹼廢液混合進行中和而得到工業級硫酸鹽類,但硫酸鹽類的產量逐年上升,礙於法律上的限制,工業硫酸鹽無法作為農用肥料,目前將以添加強鹼與硫酸鹽反應形成硫酸鈉再應用,但原料NaOH的成本過於昂貴,硫酸鹽類的再利用議題仍需進一步改進。
本研究以熱裂解程序分解硫酸鹽類以再獲得鹼性氣體與二氧化硫,透過添加金屬氧化物,可以同時捕捉二氧化硫,更利於分離兩種氣體產物,金屬氧化物選擇氧化鎳,因為氧化鎳脫硫溫度較低,使其易於回用。最初,以熱重分析儀串聯質譜儀驗證其反應機制,並以X射線繞射儀確認中間產物結構。完成反應機制的驗證後,進行批次式實驗,透過在不同溫度下的裂解反應,捕捉鹼性氣體並計算產率,在此實驗中發現當到達酸性與鹼性氣體同時釋出之溫度時,會在管路冷區中形成固體顆粒,尾氣也呈現氣溶膠的狀態,後續透過添加吸附劑與抽氣裝置,防止以上的情形發生,以提高鹼性氣體產率達62.12 % 。近一步依據批次式實驗結果設計連續式系統,連續式熱裂解反應器選擇螺桿反應器,透過螺桿的攪拌可幫助硫酸鹽類與氧化鎳的混合,在調整不同的溫度、轉速與進料比例的實驗中,最佳參數之溫度為570℃,轉速為0.07 RPM,進料之硫酸鹽類與氧化鎳比例為1:8,可得到最佳產率83.56 %,並以此產率進行經濟評估的計算。在未來若能回收鍋爐之熱能裂解硫酸鹽類既可以減少工業廢棄物的排放,所產生之鹼性氣體也可作為產品再次回用,對於環境、能源與經濟層面皆有可行性,可做為後續實場建置之參考。


In recent years, the rapid growth of the semiconductor industry has led to the extensive use of piranha solution for wafer cleaning in wafer fabs, resulting in the generation of waste sulfuric acid. Currently, the common practice is to neutralize the acidic and alkaline waste liquids to obtain industrial-grade sulfates. However, due to legal restrictions, industrial sulfates cannot be used as agricultural fertilizers, leading to an increasing production of sulfates year by year. One method involves reacting these sulfates with strong alkalis to form sodium sulfate for further applications, but the high cost of raw material NaOH makes this process expensive, necessitating further improvements in the reuse of sulfates.
This research focuses on decomposing sulfates through a thermal pyrolysis process to obtain alkaline gases and sulfur dioxide. By adding metal oxides, sulfur dioxide can be simultaneously captured, facilitating the separation of the two gaseous products. Nickel oxide is chosen due to its lower desulfurization temperature, making it easier to reuse. Initially, the reaction mechanism is verified using a thermogravimetric analyzer coupled with a mass spectrometer, and the intermediate product structure is confirmed by X-ray diffraction. After verifying the reaction mechanism, batch experiments are conducted to capture the alkaline gases and calculate the yield at different pyrolysis temperatures. It is observed that when the temperature reaches the point where both acidic and alkaline gases are released, solid particles form in the cold zone of the pipeline, and the exhaust gas appears as an aerosol. Subsequent experiments add adsorbents and extraction devices to prevent these occurrences, achieving an alkaline gas yield of 62.12%.
Based on the batch experiment results, a continuous system is designed. A screw reactor is selected for the continuous thermal pyrolysis reactor, where the mixing of sulfates and nickel oxide is aided by the stirring action of the screw. Experiments adjusting different temperatures, rotational speeds, and feed ratios determine the optimal parameters: a temperature of 570 °C, a rotational speed of 0.07 RPM, and a feed ratio of 1:8 for sulfates to nickel oxide, resulting in the best yield of 83.56 %. This yield is then used for economic evaluation calculations. In the future, if boiler heat recovery can be used for the pyrolysis of sulfates, it can reduce industrial waste emissions, and the generated alkaline gases can be reused as products. This approach is feasible in terms of environmental, energy, and economic aspects and can serve as a reference for subsequent field implementation.

摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 X 表目錄 XII 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、 文獻回顧 4 2-1 工業硫酸鹽類處理法 4 2-1-1 蒸發結晶法 5 2-1-2 中和處理法 5 2-1-3 熱裂解法 6 2-2 煙道氣體中脫硫之技術 7 2-2-1 乾式脫硫技術 7 2-2-2 半乾式脫硫技術 9 2-2-3 濕式脫硫技術 11 2-2-4 脫硫技術比較 15 2-3 熱裂解反應器介紹 16 2-3-1 固定床反應器 16 2-3-2 流體化床反應器 17 2-3-3 螺桿反應器 18 2-3-4 旋轉錐反應器 19 2-3-5 真空熱裂解反應器 20 2-3-6 燒蝕反應器 20 2-3-7 電漿反應器 21 2-3-8 微波反應器 22 2-3-9 熱裂解反應器比較 23 第三章、 實驗方法與步驟 24 3-1 實驗流程說明 24 3-2 實驗藥品 25 3-3 實驗設備與儀器 26 3-3-1 實驗設備 26 3-3-2 分析儀器 27 3-4 實驗步驟 30 3-4-1 反應途徑驗證實驗 30 3-4-2 批次式實驗系統 30 3-4-3 連續式實驗系統 32 3-5 實驗評估指標 34 第四章、 結果與討論 36 4-1 硫酸鹽類裂解反應驗證 36 4-1-1 硫酸鹽類TGA-MS分析結果 36 4-1-2 硫酸鹽類與氧化鎳混合物TGA-MS分析 37 4-1-3 混合物反應中間產物驗證 38 4-1-4 氧化鎳對於硫酸鹽類產氣之催化效益影響 39 4-1-5 氧化鎳比例對於二氧化硫捕捉率之影響 40 4-2 批次式反應實驗 42 4-2-1 批次式反應器設計 42 4-2-2 批次式系統實驗結果 43 4-2-3 批次式系統改良 48 4-3 連續式反應器實驗 53 4-3-1 連續式反應器設計 53 4-3-2 連續式系統實驗結果 53 4-4 經濟評估 60 第五章、 結論與未來展望 63 5-1 結論 63 5-2 未來展望 64 第六章、 參考文獻 67

[1] B. Clément & G. Merlin. (1995). The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Science of The Total Environment, vol. 170, no. 1, pp. 71-79.
[2] A. Hasanoğlu, J. Romero, B. Pérez, & A. Plaza. (2010). Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal, vol. 160, no. 2, pp. 530-537.
[3] 鄭凱倫, 柯建盛, 蕭千城和劉駿。(2020). "台積公司工業級硫酸零外購,再創循環經濟里程碑" 台灣積體電路製造股份有限公司。
[4] 傅正貴, 李玫, 許哲彰和王俊元。(2016). "創新氨氮廢水資源化"台灣積體電路製造股份有限公司。
[5] Satyendra. (2019). Ammonium Sulphate – A By-product of Coal Coking Process.
https://www.ispatguru.com/ammonium-sulphate-a-by-product-of-coal-coking-process/
[6] Peter, L., & Dennis, M. L. (2017). Ammonia-Based Flue Gas Desulfurization. Jiangnan Environmental Technology Inc. https://www.power-eng.com/emissions/ammonia-based-flue-gas-desulfurization/#gref
[7] VALCO. Manufacturing process of Caprolactam. https://www.valcogroup-valves.com/faq-2/caprolactam-manufacturing-process-of-caprolactam/
[8] Stratview Research. Industrial Ammonium sulfate Market Size, Share & Forecast Analysis: 2022-2028. https://www.stratviewresearch.com/2655/industrial-ammonium-sulfate-market.html
[9] Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A., & Stoukides, M. (2017). Progress in the electrochemical synthesis of ammonia. Catalysis Today, 286, 2-13.
[10] Giddey, S. P. S. B. S., Badwal, S. P. S., & Kulkarni, A. (2013). Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy, 38(34), 14576-14594.
[11] 吳聖培, 曾俞勳, 劉駿和丁瑞華。(2019)."業界首創,台積公司轉製氨氮廢水為有價工業級原料"台灣積體電路製造股份有限公司。
[12] Fleming, E. P., & Perkins, M. F. (1939). U.S. Patent No. 2,182,078. Washington, DC: U.S. Patent and Trademark Office.
[13] 楊添旺, 中華民國專利公報公告編號:TW1657048B,「硫酸銨熱分解系統與方法」,2019年四月。
[14] Song, X., Zhao, J., Li, Y., Sun, Z. & Yu, J. (2013). Thermal decomposition mechanism of ammonium sulfate catalyzed by Nirric oxide. Chem. Sci. Eng, 7(2), 210–217.
[15] Kan, H., Wong, C. M., Vichit-Vadakan, N., & Qian, Z. (2010). Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environmental research, 110(3), 258-264.
[16] 固定污染源空氣污染物排放標準(2021年6月29日)行院環境保護署
[17] Anthony, E. J., Berry, E. E., Blondin, J., Bulewicz, E. M., & Burwell, S. (2005). LIFAC ash – strategies for management. Waste Management, 25(3), 265–279.
[18] RYYPPÖ, M., & EKMAN, I. (2000). Improving the performance of LIFAC FGD in Chinese boilers. Modern power systems, 20(11), 31-32.
[19] Rubio, B., Izquierdo, M. T., & Mastral, A. M. (1998). Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars. Carbon, 36(3), 263–268.
[20] Kikuyama, S., Miura, A., Kikuchi, R., Takeguchi, T., & Eguchi, K. (2004). SOx sorption–desorption characteristics by ZrO2-based mixed oxides. Applied Catalysis A: General, 259(2), 191–197.
[21] Mathieu, Y., Tzanis, L., Soulard, M., Patarin, J., Vierling, M., & Molière, M. (2013). Adsorption of SOx by oxide materials: A review. Fuel Processing Technology, 114, 81–100.s
[22] Tagawa, H. (1984). Thermal decomposition temperatures of metal sulfates. Thermochimica Acta, 80(1), 23–33.
[23] Hill, F. F., & Zank, J. (2000). Flue gas desulphurization by spray dry absorption. Chemical Engineering and Processing: Process Intensification, 39(1), 45–52.
[24] Liu, Z. S. (2005). Advanced experimental analysis of the reaction of Ca(OH)2 with HCl and SO2 during the spray dry scrubbing process. Fuel, 84(1), 5-11.
[25] Yang, H. M., & Kim, S. S. (2000). Experimental Study on the Spray Characteristics in the Spray Drying Absorber. Environmental Science & Technology, 34(21), 4582–4586.
[26] Koech, L., Rutto, H., Lerotholi, L., Everson, R. C., Neomagus, H., Branken, D., & Moganelwa, A. (2021). Spray drying absorption for desulphurization: a review of recent developments. Clean Technologies and Environmental Policy, 23(6), 1665–1686.
[27] Zhang, J., You, C., Zhao, S., Chen, C., & Qi, H. (2008). Characteristics and Reactivity of Rapidly Hydrated Sorbent for Semidry Flue Gas Desulfurization. Environmental Science & Technology, 42(5), 1705–1710.
[28] Cheng, G., & Zhang, C. (2018). Desulfurization and denitrification technologies of coal-fired flue gas. Polish Journal of Environmental Studies, 27(2).
[29] Córdoba, P. (2015). Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel, 144, 274–286.
[30] 雙鹼法脫硫-技術介紹。工業互聯信息。檢自https://kknews.cc/zh-tw/news/r5gnzlr.html (Jun. 16, 2019)
[31] Tokumura, M., Baba, M., Znad, H. T., Kawase, Y., Yongsiri, C., & Takeda, K. (2006). Neutralization of the Acidified Seawater Effluent from the Flue Gas Desulfurization Process: Experimental Investigation, Dynamic Modeling, and Simulation. Industrial & Engineering Chemistry Research, 45(18), 6339–6348.
[32] SHALE, C. C. (1974). Ammonia Injection: A Route to Clean Stacks. Pollution Control and Energy Needs, 195–205.
[33] Li, X., Han, J., Liu, Y., Dou, Z., & Zhang, T. A. (2022). Summary of research progress on industrial flue gas desulfurization technology. Separation and Purification Technology, 281, 119849.
[34] Kar, Y. (2011). Catalytic pyrolysis of car tire waste using expanded perlite. Waste Management, 31, 8, 1772-1782.
[35] Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40-46.
[36] Singh, R., Obwaka, E., Mahabeer, J. & Mohammadi, A. H. (2019). Prediction of the minimum fluidization velocity and bed voidage for difNirent solid particles. South Africa, Durban. University of KwaZulu-Natal.
[37] Nam, H., Capareda, S. C., Ashwath, N., & Kongkasawan, J. (2015). Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors. Energy, 93, 2384-2394.
[38] Wagenaar, B. M., Prins, W., & Van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49(24), 5109-5126.
[39] Perkins, G., Bhaskar, T., & Konarova, M. (2018). Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 90, 292-315.James, L. V. and Leonard, K. P. (1976). Aerosol Formation Resulting from the Reaction of Ammonia and Sulfur Dioxide. Ind. Eng. Chem. Fundamen, 15, 3, 202–206.
[40] Pakdel, H., Pantea, D. M., & Roy, C. (2001). Production of dl-limonene by vacuum pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 57(1), 91-107.
[41] Khuenkaeo, N., & Tippayawong, N. (2018, June). Bio-oil production from ablative pyrolysis of corncob pellets in a rotating blade reactor. In IOP ConNirence Series: Earth and Environmental Science (Vol. 159, p. 012037). IOP Publishing.
[42] Bogaerts, A., Neyts, E., Gijbels, R., & Van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658.
[43] Cai, X., & Du, C. (2021). Thermal plasma treatment of medical waste. Plasma Chemistry and Plasma Processing, 41, 1-46.
[44] Huang, H., & Tang, L. (2007). Treatment of organic waste using thermal plasma pyrolysis technology. Energy Conversion and Management, 48(4), 1331-1337.
[45] Ludlow-Palafox, C., & Chase, H. A. (2006). Microwave Pyrolysis of Plastic Wastes. Niedstock Recycling and Pyrolysis of Waste Plastics, 569–594.
[46] Ludlow-Palafox, C., & Chase, H. A. (2001). Microwave-induced pyrolysis of plastic wastes. Industrial & engineering chemistry research, 40(22), 4749-4756.
[47] Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass Pyrolysis. Advances in Chemical Engineering, 75–139.
[48] Scott, W. D. & Lamb, D. (1969). Two Solid Compounds Which Decompose into a Common Vapor. Anhydrous Reactions of Ammonia and Sulfur Dioxide. Department of Atmospheric Sciences, University of Washington, Seattle, Washington.
[49] Guo, Y., Liu, Z., Huang, Z., Liu, Q. & Guo, S. (2005). Reaction Behavior of Sulfur Dioxide with Ammonia. Ind. Eng. Chem. Res, 44, 26, 9989–9995.
[50] 台灣電力公司, (民國113年), 簡要電價表. https://www.taipower.com.tw/tc/page.aspx?mid=238
[51] 台灣中油股份有限公司, (民國113年), 天然氣牌價表, https://www.cpc.com.tw/cp.aspx?n=46
[52] 台灣肥料股份有限公司, (民國113年), 液氨產品調整牌價. https://www.taiNir.com.tw/FileUploadCategoryListC003600.aspx?CategoryID=f3f5c371-3757-4690-86c2-3d19Nied356a&appname=FileUploadCategoryListC003600

無法下載圖示 全文公開日期 2034/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE