簡易檢索 / 詳目顯示

研究生: 楊慶彬
Ching-Been Yang
論文名稱: 近場光學微影加工製程及非破壞方法逆解光纖探針口徑研究
Study on Near Field Photolithography Process and Inverse Calculation of the Probe Aperture Size by Nondestructive Method
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 陳朝光
Chao-Kuang Chen
翁政義
Cheng-I Weng
陳文華
Wen-Hwa Chen
王國雄
Kuo-Shong Wang
蔡穎堅
Ying-Chien Tsai
黃佑民
You-Min Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 174
中文關鍵詞: 近場光學微影加工逆解光纖探針口徑階段式田口類神經網路半高線寬
外文關鍵詞: Near field photolithographic fabrication, inverse calculation of fiber probe aperture size, Progressive Taguchi-Neural Network Model, FWHM
相關次數: 點閱:343下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要的研究目的在探討近場光學微影加工製程及非破壞方法逆解光纖探針口徑之相關研究。首先對光纖探針近場的分析,本文以近區輻射場理論做為分析光纖探針近場之理論模式,分析探討裸光纖探針及鍍鋁層探針的近場分佈,並對平行光與高斯光束通過光纖探針之近場模擬。本文的實驗成果與理論模擬成果均可達半高線寬為100 nm以下的近場光學微影加工。
其次探討近場光學微影加工理論模式及實驗,包括點加工、線加工、曲線加工理論模式。先分析高斯光束通過鍍鋁層光纖探針之近場光功率密度分佈,提出點加工、線加工、曲線加工之曝光能量密度公式來分析光阻表面之曝光能量密度分佈情形。並將光阻分割成有限節點,結合曝光能量密度公式,計算出曝光後光阻內部有限各節點光活性化合物(PAC)的濃度變化,最後結合Mack之顯影模式計算出光阻顯影後之加工外形及半高線寬。同時本文提出最佳化搜尋合乎允許最大弦誤差範圍內之插值點方法,以建立近場光學微影加工之曲線。在近場光學微影加工實驗方面,本文先對光阻做Dill A、B、C參數之量測分析,並進行近場光學點加工、線加工之微影加工實驗及光纖探針口徑確認工作,驗證所建之近場光學微影加工理論模式為合理的。
本文進一步建立以非破壞方法逆解光纖探針口徑理論模式,提出以線段微影加工實驗結果與近場光學微影線段加工理論模式之模擬結果的兩者結果誤差為目標函數,並透過Levenberg-Marquardt Method搜尋及合理的收斂準則,逆解出合乎實驗與理論模式之光纖探針口徑。同時透過比較線段微影加工實驗與逆解探針口徑結果模擬之兩者加工外形,以驗證逆解之光纖探針口徑為合理可接受的。最後本文提出「階段式田口類神經網路模式」,結合田口法及類神經網路建構近場光學微影加工實驗預測模式,以建立一套實驗次數少、預測時間短且預測精度高之田口類神經網路。由網路之分析結果,證實了本文所建構之田口類神經網路模式,比傳統田口加法模式可提供更為精確的預測結果,同時可改善傳統類神經網路需大量訓練例之缺點。


The major research objective of this thesis is to investigate the process researches which relate to near field photolithography process and inverse calculation of the probe aperture size by nondestructive method. With regards to the analysis of the near field of fiber probe, this thesis firstly uses near field radiation theory to be the equation when analyzing the near field of fiber probe, so as to analyze the near field distribution of the uncoated probe and the aluminum coated fiber probe. Also, it undergoes near field simulation when the direction light and the Gaussian beam pass through the fiber probe. The FWHM of practice experiment results and simulation results of theoretical model can be under 100 nm.
Secondly, this thesis analyzes into the theoretical model and the experimental research of the near field photolithographic fabrication, and the theoretical model includes point fabrication, line fabrication or curvilinear fabrication. It firstly analyzes into the near field light power density distribution when the Gaussian beam passes through the aluminum coated fiber probe, then the exposure energy density equation of abovementioned three fabrication model are proposed to analyze the surface exposure distribution of the photoresist. Also, it dissects the photoresist into finite nodes, and by combining with the exposure energy density equation, it calculates the concentration change of the PAC of the respective finite node insides the photoresist upon exposure. Finally, combined with the development model of Mack, the fabrication profile and the FWHM of the photoresist after development are calculated. This thesis proposes to use optimal method to search for the interpolation that matches with the allowable maximum range of chord error to build a curve of near field photolithographic fabrication. In the aspect of experiment of the near field photolithographic point fabrication, this thesis firstly undergoes Dill A, B and C parameters measurement analysis towards the photoresist, then, confirms the experiments of near field photolithographic point or linear fabrication and the fiber probe aperture size, so as to verify that the theoretical model of the near field photolithographic point fabrication established in this thesis is reasonable.
Furthermore, the theoretical model of inverse calculation of fiber probe aperture size by means of non-destructive procedure is built up, and the error between the result of the photolithographic line fabrication experiment and the simulation result of the theoretical model of the near field photolithographic line fabrication being set as the target function is proposed. By through of Levenberg-Marquardt search and a reasonable convergence criterion, a fiber probe aperture size that matches with the experiment of photolithographic line fabrication experiment and the theoretical model of the near field photolithographic line fabrication is obtained by inverse analytical method. At the same time, by comparing the processing profile of the photolithographic line fabrication experiment and the simulation result of the inverse calculation of the fiber probe aperture size, the inverse calculated fiber probe aperture size is verified and proved which is reasonable and acceptable. At last, combined with Taguchi’s Method and artificial neural network, a Progressive Taguchi-Neural Network Model is proposed in this thesis to establish a prediction model of near field photolithography processing experimen, so as to build a Taguchi’s ANN that requires fewer experiment frequencies and higher prediction accuracy. By the network analytical result, it is confirmed that the Taguchi’s artificial neural network model constructed in this thesis can more accurately predict the result than the traditional Taguchi’s addition model. At the same time, it can improve the demerit of the traditional artificial neural network requiring for large numbers of training examples.

中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 誌謝………………………………………………………………Ⅳ 目錄…………………………………………………………………Ⅴ 圖目錄……………………………………………………………Ⅹ 表目錄……………………………………………………………ⅩIII 符號表…………………………………………………………ⅩIV 第一章 緒論 1.1 前言………………………………………………………………1 1.2 研究動機與目的…………………………………………………1 1.3 文獻回顧…………………………………………………………4 1.3.1有關光纖探針方面之文獻……………………………………4 1.3.2有關近場光學微影點及線段加工方面之文獻………………5 1.3.3有關近場光學微影曲線加工方面之文獻……………………6 1.3.4有關以非破壞方法逆解光纖探針口徑方面之文獻…………7 1.3.5有關結合田口法及類神經網路方面之文獻…………………8 1.4研究方法…………………………………………………………9 1.4.1有關光纖探針近場區域的分析………………………………9 1.4.2 有關近場光學微影點加工理論模式及實驗研究…………10 1.4.3有關近場光學微影線段加工理論模式及實驗研究………10 1.4.4有關近場光學微影曲線加工理論模式及模擬研究………11 1.4.5 有關以非破壞方法逆解光纖探針口徑理論模式之建立與 分析……………………………………………………………12 1.4.6 有關結合田口法及類神經網路建構近場光學微影加工實 驗預測模式……………………………………………………12 第二章 光纖探針近場區域的分析 2.1 前言………………………………………………………………14 2.2數學模式…………………………………………………………14 2.3光纖探針之近場區域的分析結果與討論………………………19 第三章 近場光學微影點加工理論模式及實驗研究 3.1前言………………………………………………………………31 3.2近場光學微影點加工理論模式…………………………………31 3.2.1鍍鋁層光纖探針近場之光功率密度分析…………………31 3.2.2光阻曝光模式分析…………………………………………36 3.2.3光阻顯影模式分析…………………………………………38 3.3近場光學微影點加工實驗………………………………………41 3.4近場光學微影點加工理論模式模擬結果與討論………………43 第四章 近場光學微影線段加工理論模式及實驗研究 4.1前言………………………………………………………………52 4.2近場光學微影線段加工理論模式………………………………52 4.2.1線段微影加工之曝光能量密度分析………………………52 4.2.2線段微影加工之曝光模式分析……………………………56 4.2.3線段微影加工之顯影模式分析……………………………57 4.3近場光學微影線段加工實驗……………………………………59 4.4近場光學微影線段加工理論模式模擬結果與討論……………60 第五章 近場光學微影曲線加工理論模式及模擬研究 5.1前言………………………………………………………………74 5.2近場光學微影曲線加工理論模式………………………………74 5.2.1 Cubic Spline曲線數學模式…………………………………74 5.2.2 曲線加工之路徑規劃及最佳化搜尋插值點………………76 5.2.3 微影曲線加工之曝光能量密度分佈………………………81 5.2.4微影曲線加工之曝光模式………………………………85 5.2.5微影曲線加工之顯影模式…………………………………86 5.3 近場光學微影線段加工實驗……………………………………88 5.4近場光學微影曲線加工理論模式模擬結果與討論……………90 第六章 以非破壞方法逆解光纖探針口徑理論模式之建立 與分析 6.1 前言…………………………………………………………….…107 6.2 近場光學微影線段加工理論模式………………………………107 6.3 非破壞方法逆解光纖探針口徑之理論模式……………………108 6.4 非破壞方法逆解光纖探針口徑之結果與討論…………………112 6.4.1逆解光纖探針口徑之實驗…………………………………112 6.4.2逆解光纖探針口徑之過程…………………………………112 6.5 逆解光纖探針口徑之產業應用價值……………………………114 第七章 結合田口法及類神經網路建構近場光學微影 加工實驗預測模式 7.1 前言……………………………………………………………….127 7.2 田口法進行近場光學微影線段加工實驗………………………128 7.2.1 逆解光纖探針口徑…………………………………………128 7.2.2 田口法之控制因子水準……………………………………128 7.2.3 田口法之資料分析…………………………………………129 7.3 階段式田口類神經網路模式之建構……………………………132 7.3.1 第一階段建構初步網路……………………………………133 7.3.2 第二階段網路精煉…………………………………………137 7.3.3第三階段追加關鍵性實驗與完成預測精度高之類神 經網路………………………………………………………..139 7.4 階段式田口類神經網路模式之建構實例………………………140 7.4.1 田口法之分析結果…………………………………………140 7.4.2 階段式田口類神經網路模式之開發實例…………………141 7.4.3 預測模式之驗證與討論……………………………………143 第八章 結論與未來研究方向 8.1 結論………………………………………………………………159 8.1.1 有關光纖探針近場區域的分析方面………………………159 8.1.2 有關近場光學微影點加工理論模式及實驗研究方面……159 8.1.3 有關近場光學微影線段加工理論模式及實驗研究方面…160 8.1.4 有關近場光學微影曲線加工理論模式及模擬研究方面…160 8.1.5 有關以非破壞方法逆解光纖探針口徑理論模式之建立 與分析方面…………..………………………………………161 8.1.6 有關結合田口法及類神經網路建構近場光學微影加工實 驗預測模式方面………………..……………………………161 8.2 未來研究發展方向………………………………………………162 參考文獻………………………………………………………163 附錄…………………………………………………………170 作者簡介………………………………………………………174 國立台灣科技大學博碩士論文授權書………………………175

1. “Aurora-2型近場光學顯微鏡之user操作手冊,” THERMO MICROSCOPES INC (Veeco Instruments INC), Woodbury, New York, U.S.A. (2000).
2. Betzig, E., A. Harootunian, A. Lewis and M. Isaacson, ”Near-field Diffraction by a Slit: Implication for Superresolution Microscopy,” Applied Optics, Vol. 25, pp.1890-1900 (1986).
3. Betzig, E., M. Isaacson and A. Lewis, ”Collection Mode Near-field Scanning Optical Microscopy,” Appl. Phys. Lett., 51, pp.2088-2090 (1987).
4. Naber, A., H. Kock and H. Fuchs, ”High-Resolution Lithography with Near-Field Optical Microscopy,” Scanning Vol. 18, pp.567-571 (1996).
5. Lo, S. C. and H. N. Wang, ”Near-field Photolithography by a Fiber Probe,” Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, 28-30 Oct. pp.36-39 (2001).
6. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc. New York, pp.282-284 (1989).
7. Mack, C. A., ”Development of Positive Photoresists,” J. Electrochem. Soc.: Solid–State Science and Technology, Vol. 134, No. 1, pp.148-152 (1987).
8. Cherian, R. P., L. N. Smith and P. S. Midha, ”A neural network approach for selection of powder metallurgy materials and process parameters,” Journal of Artificial Intelligence Engineering, Vol. 14, pp.39-44 (2000).
9. Jain, R. K., V. K. Jain and P. K. Kalra, ”Modeling of Abrasive Flow Machining Process: a Neural Network Approach,” Wear, Vol. 231, pp.242-248 (1999).
10. Lin, S. C. and C. J. Ting, ”Drill Wear Monitoring Using Neural Networks,” International Journal of Machine Tools & Manufacture, Vol. 36, No. 4, pp.465-475 (1996).
11. Ozel, T. and A. Nadgri, ”Prediction of Flank Wear by Using Back Propagation Neural Network Modeling When Cutting Hardened H-13 Steel with Chamfered and Honed CBN Tools,” International Journal of Machine Tools & Manufacture, Vol. 42, pp.287-297 (2002).
12. Gunasekera, J. S., Z. Jia, J. C. Malas and L. Rabelo, ”Development of a Neural Network Model for a Cold Rolling Process,” Engineering Application of Artificial Intelligence, Vol. 11, pp.597-603 (1998).
13. Ash, E. A. and G. Nichols, ”Super-resolution Aperture Scanning Microscope,” Nature, Vol. 237, pp.510-512 (1972).
14. Massey, G. A., J. A. Davis, S. M. Katnik and E. Omon, ” Subwavelength Resolution Far-infrared Microscopy,” Appl. Opt. 24, pp.1498 -1501 (1985).
15. Betzig, E., J. K. Yrautman and T. D. Harris, ”Breaking the Diffraction Barrier, Optical Microscopy on a Nanometric Scale,” Science, 251(5000), pp.1468-1470 (1991).
16. Bethe, H. A., ”Theory of Diffraction by Small Holes,” Physical Review 66, pp.163-182 (1944).
17. Bouwkamp, C. J., ”On Bethe’s Theory of Diffraction by Small Holes,” Philips Research Reports 5, pp.321-332 (1950).
18. Leviatan, Y. and R. F. Harrington, ”A Low Frequency Moment Solution for Electromagnetic Coupling Through an Aperture of Arbitrary Shape,” Arch. Elektr. Ubertr. 38, pp.231-238 (1984).
19. Neerhoff, F. L. and G. Mur, ”Diffraction of a Plane Electromagnetic Wave by a Slit in a Thick Screen Placed between Two Different Media,” Appl. Sci. Res. 28, pp.73-88 (1973).
20. Roberts, A., ”Near-zone Fields Behind Circular Apertures in Thick, Perfectly Conducting Screens,” J. Appl. Phys. 15 April 65(8), pp. 2896-2899 (1989).
21. 蔡崇洲、謝和銘、謝東和,電磁場與電磁波,第777~830頁,台北,台灣復文興業股份有限公司,民國八十六年。
22. Novotny, L., D. w. Pohl and P. Regli., ”Near-field, Far-field and Imaging Properties of the 2D Aperture SNOM,” Ultramicroscopy, 57(2-3), pp.180-188 (1995).
23. Novotny, L., D. w. Pohl and P. Regli., ”Light Propagation Through Nanometer Sized Structures: the Two-dimension Aperture Scanning Near-field Optical Microscope,” J. Opt. Soc. Am. A., 11(6), pp.1768-1779 (1994).
24. Danzebrink, H. U., A. Castiaux and C. Girard, ”Transmission Scanning Near-field Optical Microscopy with Un-coated Silicon Tips,” Ultramicroscopy, 71(1-4), pp.49-58 (1998).
25. Wegscheider, S., A. Kirsch, J. Mlynek and G. Krausch, ”Scanning Near-field Optical Lithography,” Thin Solid Films, 264, pp.264-267 (1995).
26. Dill, F. H., W. P. Hornberger, P. S. Hauge and J. M. Shaw, ”Characterization of Positive Photoresist,” IEEE Trans. Electr. Dev., Vol. ED-22, NO. 7, JULY, pp.445-452 (1975).
27. Babu, S. V. and E. Barouch, ”Exact Solution of Dill’s Model Equation for Positive Photoresist Kinetics,” IEEE Electr. Dev. Letters, Vol. EDL-7, NO. 4, APRIL, pp.252-253 (1986).
28. 邱燦賓,「微影製程之數學模式(I) 」,奈米通訊,第五卷第三期, 第30∼37 ,民國八十七年。
29. 邱燦賓,「微影製程之數學模式(II) 」,奈米通訊,第六卷第二期,第25∼31 ,民國八十八年。
30. Rogers, D. F. and J. Adams, ”Mathematical Element for Computer Graphics ,” 2nd edition, McGraw-Hill Book Co., (1990).
31. Yeh, S. S. and P. L. Hsu, ”Adaptive-feedrate Interpolation for Parametric Curves with a Confined Chord Error,” Computer-Aided Design, Vol. 34, pp.229-237 (2002).
32. Tikhonov, A. N. and V. Y. Arsenin, ”Solution of Ill-posed Problems,” V. H. Winston and Sons, Washington, D.C, (1977).
33. Romanov, V. G.,Cheng-I Weng and Tei-Chen Then, ”An Inverse Problem for a Layered Elastic Plate,” Applied Mathematics and Computation, 137, pp.349-369 (2003).
34. Schnur, D. S. and Z. Nicholas, ”An Inverse Method for Determining Elastic Material Properties and a Material Interface,” International Journal for Numerical Methods in Engineering, Vol. 33, pp.2039-2057 (1992).
35. Balan, T., L. Fourment and Jean-Loup Chenot, ”Shape Optimization of the Preforming Tools in Forging,” Inverse problem in Engineering : Theory and Practice, ASME, pp.107-113 (1998).
36. Li, C. D., ”The Prediction of Friction Factor of the Forging Workpiece,” Ms. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Taiwan (1995).
37. Chen, C. K., ”Inverse Calculation of the Friction Coefficient During the Warm Upsetting of Molybdenum,” International Journal of Mechanical Sciences, No 47, pp.1059-1078 (2005).
38. Jeng, J. Y., Y. S. Wong and C. T. Ho, ”Over-curing Reduction of Parts Fabricated by the Solid Laser-diode Plotter Rapid Prototyping System Using the Taguchi method,” International Journal of Advanced Manufacturing Technology, Vol. 18, pp.683-691 (2001).
39. Tsai, K. M. and P. J. Wang, ”Semi-empirical Model of Surface Finish on Electrical Discharge Machining,” International Journal of Machine Tool & Manufacture, Vol. 41, pp.1455-1477 (2001).
40. Ko, D. C., D. H. Kim and B. M. Kim, ”Application of Artificial Neural Network and Taguchi Method to Perform Design in Metal Forming Considering Workability,” International Journal of Machine Tool & Manufacture, Vol. 39, pp.771-785 (1999).
41. Davim, J. P., ”An Experimental Study of the Tribological Behaviour of the Brass / Steel Pair,” Journal of Material Processing Technology, Vol. 100, pp.273-277, (2000).
42. Davim, J. P., N. Marques and A. M. Baptista, ”Effect of Carbon Fiber Reinforcement in the Frictional Behaviour of Peek in a Water Lubricated Environment,” Wear, Vol. 251, pp.1100-1104 (2001).
43. Joshi, S. S., N. Ramakrishnan, H. E. Nagarwalla and P. Ramakrishnan, ”Wear of Rotary Carbide Tools in Machining of Al/SiCp Composites,” Wear, Vol. 230, pp.124-132 (1999).
44. Chen, R. S., H. C. Lin and C. Kung, ”Optimal Dimension of PQFP by Using Taguchi Method,” Composite Structures, Vol. 49, pp.1-8 (2000).
45. Lin, T. Y. and C. H. Tseng, ”Optimum Design for Artificial Neural Networks: an Example in a Bicycle Derailleur System,” Engineering Application of Artificial Intelligence, Vol. 13, pp.3-14 (2000).
46. Syrcos, G. P., ”Die Casting Process Optimization Using Taguchi Methods,” Journal of Materials Processing Technology, Vol. 135, pp.68-74 (2001).
47. Fowlkes, W. Y. and C. M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Addison-Wesley, Reading, Massachusetts, Chap. 4, 5, 16, 17, pp.53-92, 292-326 (1995).
48. Li, X., S. Dong and P. K. Venuvinod, ”Hybrid learning for Tool Wear Monitoring,” International Journal of Advanced Manufacturing Technology, Vol. 16, pp.303-307 (2000).
49. Wadi, I. and R. Balendra, ”Using Neural Networks to Model the Blanking Process,” Journal of Materials Processing Technology, Vol. 91, pp.52-65 (1999).
50. Lin, J. C., ”Prediction of Rolling Force and Deformation in Three -Dimensional Cold Rolling by Using the Finite-element Method and a Neural Network,” International Journal of Advanced Manufacturing Technology, Vol. 20, pp.799-806 (2002).
51. Wu, C. Y. and Y. C. Hsu, ”Optimal Shape Design of an Extrusion-Forging Die Using a Polynomial Network and Genetic Algorithm,” International Journal of Advanced Manufacturing Technology, Vol. 20, pp.128-137 (2002).
52. Pai, P. S., T. N. Nagabhushana and P. K. R Rao, ”Flank Wear Estimation in Face Milling Based on Radial Basis Function Neural Networks,” International Journal of Advanced Manufacturing Technology, Vol. 20, pp.241-247 (2002).
53. Li, X., P. K. Venuvinod and M. K. Chen, ”Feed Cutting Force Estimation From the Current Measurement with Hybrid Learning,” International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 859-862 (2000).
54. Jeng, J. Y., T. F. Mau and S. M Leu, ”Prediction of Laser Butt Joint Welding Parameters Using Back Propagation and Learning Vector Quantization Networks,” Journal of Materials Processing Technology, Vol. 99, pp.207-218 (2000).
55. Tay, K. M. and C. Butler, ”Modeling and Optimizing of A Mig Welding Process – a Case Study Using Experimental Designs and Neural Networks,” Quality and Reliability Engineering International, Vol. 13, pp.61-70 (1997).
56. Al-Habaibeh, A. and N. Gindy, ”A New Approach for Systematic Design of Condition Monitoring Systems for Milling Processes,” Journal of Materials Processing Technology, Vol. 107, Issues 1-3, pp.243-251 (2000).
57. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, Inc. New York (1989).
58. Leviatan, Y., ”Study of Near-zone Fields of a Small Aperture,” J. Appl. Phys. 60(5), 1 September, pp.1577-1583 (1986).
59. Silfvast, W. T., Laser Fundamentals, Cambridge University Press, New York, pp. 312-337 (1996).
60. Dennis, J. E. JR. and R. B. Schnabel, ”Numerical Methods for Unconstrained Optimization and NonLinear Equations,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1988).
61. Marquards, D. W., ”An Algorithm for the Estimate of Non-Linear Parameter,” Soc. Ind. Appl. Maths., pp.431-441 (1963).
62. Ravi, V. and A. A. Jennings, ”Penetration Model Parameter Estimate From Dynamic Permeablity Measurements,” Soil Sci. Soc. Am. J., Vol. 54, pp.13-19 (1990).
63. Chen, C. C., ”Investigation on Related Manufacturing Processes of Small Outline J-Lead Packaging,” Mr. Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan (2003).
64. Chen, C. K., ”Inverse Problem Research in Upsetting Parameters Estimation,” Ms. Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan (2001).
65. 李輝煌,田口方法-品質設計的原理與實務,第85~253頁,台北,高立圖書,民國九十一年。
66. Lin, Z. C. and F. Z. Lin, ”Apply Taguchi Methods and ANN to Improve Near-field Lithography Process,” Ms. Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan (2003).
67. 葉怡成,類神經網路模式應用與實作,第85~253頁,儒林圖書公司,民國九十三年。
68. 羅華強,類神經網路的應用,第5-1~5-92頁,清蔚科技股份有限公司,民國九十年。
69. Chen, E. G., ”Recognition and Classification of Fabric Defects by Fuzzy- Neural Systems,” Ms. Thesis, Department of Polymer Engineering, National Taiwan University of Science and Technology, Taiwan (1998).
70. Chang, D. Y., ”Shearing Parameters Modeling and Punch Wear Analysis for IC Leadframe Dam-bar Shearing Process,” Mr. Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan (2003).
71. Kao, J. L., ”Study on Hot Extrusion Process and Semi-solid Forming of Magnesium Alloys,” Mr. Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan (2005).
72. Ross, P. J., Taguchi Techniques for quality engineering, McGraw-Hill Inc., 2nd, New York, PP.146-148 (1996).
73. Lin, Z. C. and D. Y. Chang, ”Application of a neural network machine learning model in the selection system of sheet bending tooling,” International Journal of Artificial Intelligence in Engineering, Vol. 10, pp.21-37 (1996).
74. Tsai, C. H., ”Optimization of Blending Parameters for Plastic Barrier Containers,” Ms. Thesis, Department of Polymer Engineering, National Taiwan University of Science and Technology, Taiwan (2002).
75. Freeman, J. A. and D. M. Skapura, Neural networks: algorithms, applications, and programming techniques, Addison-Wesley, Reading, Massachusetts, chap. 3, pp.89-125 (1991).

QR CODE