簡易檢索 / 詳目顯示

研究生: 謝慶鴻
Cing-hong Sie
論文名稱: 含氟碳鏈取代基之環對苯雙烯單體及其高分子之合成與結構鑑定
Synthesis and characterization of perfluorohexyl substituted cyclophanedienes and its polymer via ring-opening metathesis polymerization
指導教授: 游進陽
Chin-yang Yu
口試委員: 邱顯堂
Hsien-tang Chiu
堀江正樹
Masaki Horie
游進陽
Chin-yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 環對苯二烯氟化分子開環歧化聚合聚對苯乙炔
外文關鍵詞: cyclophanedienes, fluorinated compounds, ring-opening metathesis polymerization (ROMP), poly(p-phenylenevinylene)s (PPVs)
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究合成含氟己烷基與辛烷氧基之不對稱環對苯雙烯單體13a;13b及氟己烷基全取代環對苯雙烯單體17b,並利用核磁共振儀、高解析度質譜儀與愛克斯光單晶繞射儀對其結構進行詳細分析與探討。此些苯環結構扭曲帶有極大環張力之雙烯分子具有潛力經由開環歧化反應進行精密聚合得低聚分散性、低結構缺陷之聚對苯乙炔,並且為研究空間電荷轉移合適之模型分子。

經由實驗顯示,環對苯雙烯非鏡像異構物13a可成功藉由釕基有機複合物為起始劑進行開環歧化聚合反應得聚對苯乙炔P1。膠體滲透層析儀顯示其聚分散引數小於1.2,核磁共振光譜證明高分子骨幹呈現全反式乙烯結構。其基本光學性質經由可見光紫外光分光光譜儀與螢光光譜儀測定


The novel cyclophanediene-based monomer containing perfluorohexyl substituents were synthesized and further confirmed by NMR, HRMS and solid-state crystallography studies. These cyclophanedienes have potential to polymerize giving p-phenylenevinylene-based conjugated polymers via ring-opening metathesis polymerization; serve as suitable models for the study of their through-space charge transfer properties.

Perfluorohexyl and octyloxy asymmetrically substituted cyclophanediene monomers: 4,7-dioctyloxy-12,15-diperfluorohexyl-[2.2]paracyclophane-1,9-diene 13a and 5,8-dioctyloxy-12,15-diperfluorohexyl-[2.2]paracyclophane-1,9-diene 13b had been synthesized in this research. Only the pseudo-geminal isomer 13a was able to be polymerized by using second generation Grubbs catalyst as an initiator to give poly(2,5-dioctyloxy-2,5-diperfluorohexyl-p-phenylenevinylene)s P1 which showed the presence of all-trans vinylene of the polymer backbone and with narrow molecular weight. The ring-opening metathesis reaction of pseudo-ortho isomer 13b did not proceed. The reason for this was postulated that the catalyst is unable to coordinate with 13b successfully due to the substituted groups shielding both forms of the alkenes. Tetraperfluorohexyl substituted paracyclophanediene monomers were tried to be synthesized, but only the pseudo-ortho isomer “5,8,12,15-tetraperfluorohexyl-[2.2]paracyclophane-1,9-diene 17b” had been observed and which performs extremely poor solubility in common organic solvents.

Chapter 1. Introduction and Aims 1 1.1 Introduction to poly(p-phenylenevinylene)s (PPVs) 2 1.1.1 Conducting polymers 2 1.1.2 Poly(p-phenylenevinylene) (PPV) 3 1.1.3 Synthesis of PPVs 4 1.2 Ring-opening metathesis polymerization (ROMP) 6 1.2.1 Alkene metathesis 6 1.2.2 Mechanism of ROMP 7 1.2.3 Common monomer for ROMP 9 1.2.4 Grubbs’ catalysts 10 1.2.5 ROMP of substituted paracyclophanediene 11 1.3 Synthesis of cyclophanediene 12 1.4 Aims of the project 13 1.5 References 14 Chapter 2. Synthesis and characterization of perfluorohexyl substituted cyclophanedienes and its polymer via ring-opening metathesis polymerization 16 2.1 Synthesis and characterization of cyclophanedienes 17 2.1.1 Octyloxy substituted bis(thiolatomethyl) benzene 17 2.1.2 Perfluorohexyl substituted bis(chloromethyl) and bis(thiolatomethyl) benzenes 19 2.1.3 Dioctyloxy-diperfluorohexyl substituted dithiaparacyclophane 23 2.1.4 Dioctyloxy-diperfluorohexyl substituted paracyclophanediene 30 2.1.5 Tetraperfluorohexyl substituted dithiaparacyclophane 39 2.1.6 Tetraperfluorohexyl substituted paracyclophanediene 42 2.1.7 Optical properties of cyclophanediene monomers 47 2.2 Preparation and characterization of phenylenevinylene based polymer via ring-opening metathesis polymerization (ROMP) 49 2.2.1 Test for ring-opening metathesis reaction of perfluorohexyl substituted cyclophanedienes 49 2.2.2 Preparation and characterization of poly(2,5-dioctyloxy-2,5-diperfluorohexyl-p-phenylenevinylene)s (P1) via ROMP 52 2.2.3 Optical properties of polymer P1 54 2.3 References 56 Chapter 3. Conclusions 58 3.1 Conclusions 59 Chapter 4. Experimental 60 4.1 General procedures 61 4.2 Synthesis of cyclophanedienes 62 4.2.1 Synthesis of 1,4-dioctyloxybenzene (1) 62 4.2.2 Synthesis of 2,5-bis(bromomethyl)-1,4-dioctyloxybenzene (2) 62 4.2.3 Synthesis of 2,5-bis(thiolatomethyl)-1,4-dioctyloxybenzene (3) 63 4.2.4 Synthesis of 1,4-bis(perfluorohexyl)benzene (4) 64 4.2.5 Synthesis of 1,4-dibromo-2,5-bis(perfluorohexyl)benzene (5) 65 4.2.6 Synthesis of 1,4-dialdehyde-2,5-bis(perfluorohexyl)benzene (6) 65 4.2.7 Synthesis of 1,4-bis(hydroxymethyl)-2,5-bis(perfluorohexyl)benzene (7) 66 4.2.8 Synthesis of 1,4- bis(chloromethyl)-2,5-bis(perfluorohexyl)benzene (8) 67 4.2.9 Synthesis of 1,4- bis(chloromethyl)-2,5-bis(perfluorohexyl)benzene (9) 67 4.2.10 Synthesis of 5,8-dioctyloxy-14,17-diperflurohexyl-2,11-dithia[3.3]paracyclophane (10a) and 6,9-dioctyloxy-14,17-diperflurohexyl-2,11-dithia[3.3]paracyclophane (10b) 68 4.2.11 Synthesis of (11) 69 4.2.12 Synthesis of (12) 70 4.2.13 Synthesis of 4,7-dioctyloxy-12,15-diperfluorohexyl-[2.2]paracyclophane-1,9-diene (13a) and 5,8-dioctyloxy-12,15-diperfluorohexyl-[2.2]paracyclophane-1,9-diene (13b) 70 4.2.14 Synthesis of 5,8,14,17-tetraperfluorohexyl-2,11-dithia[3.3]paracyclophane (14a) and 6,9,14,17-tetraperfluorohexyl-2,11-dithia[3.3]paracyclophane (14b) 72 4.2.15 Synthesis of (15) 73 4.2.16 Synthesis of (16) 73 4.2.17 Synthesis of 5,8,12,15-tetraperfluorohexyl-[2.2]paracyclophane-1,9-diene (17b) 74 4.3 Preparation of poly(2,5-dioctyloxy-2,5-diperfluorohexyl-p-phenylene- vinylene)s (P1) 75

Chapter 1.
[1] A. O. Patil, A. J. Heeger, F. Wudl, Chem. Rev. 1988, 88, 183.
[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Chem. Commun. 1977, 578.
[3] T. Schimmel, M. Schwoerer, H. Naarmann, Synth. Met., 1990, 37, 1.
[4] T. Junkers, J. Vandenbergh, P. Adriaensens, L. Lutsen, D. Vanderzande, Polym. Chem. 2012, 3, 275
[5] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
[6] R. N. McDonald, T. W. Campbell, J. Am. Chem. Soc. 1960, 82, 4669.
[7] R. A. Wessling, J. Polym. Sci., Polym. Symp. 1985, 72, 55.
[8] R. A. Wessling, R. G. Zimmerman, U.S. Patent 3401152, 1968.
[9] A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
[10] H. G. Gilch, W. L. Wheelwright, J. Polym. Sci. Pol. Chem. 1966, 4, 1337.
[11] H. Rost, A. Teuschel, S. Pfeiffer, H. H. Horhold, Synth. Met. 1997, 84, 269.
[12] Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 1993, 26, 5281.
[13] R. H. Grubbs, Handbook of Metathesis, Wiley-VCH, Germany, 2003,118.
[14] U. H. Bunz, D. Maker, M. Porz, Macromol. Rapid Commun. 2007, 28, 772.
[15] B. Alcaide, P. Almendros, A. Luna, Chem. Rev. 2009, 109, 3817.
[16] JL He’risson, Y. Chauvin, Makromol. Chem. 1971, 141, 161.
[17] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1.
[18] R. H. Grubbs, Tetrahedron, 2004, 60, 7117.
[19] J. B. Matson, PhD Thesis, California Institute of Technology, US, 2010.
[20] G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746.
[21] C. Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797.
[22] T. Otsubo, V. Boekelheide, Tetrahedron. Lett. 1975, 3881.
[23] Y. Kim, T. M. Swager, Chem. Commun. 2005, 372.

Chapter 2.
[1] R. A. W. Johnstone, M. E. Rose, Tetrahedron 1979, 35, 2169.
[2] R. H. Mitchell, V. Boekelheide, J. Am. Chem. Soc. 1974, 96, 1547.
[3] V. C. R. McLoughlin, J. Thrower, Tetrahedron 1969, 25, 5921.
[4] J. Lim, T. M. Swager, Angew. Chem. Int. Ed. 2010, 122, 7648.
[5] R. H. Mitchell, T. K. Vinod, G. J. Bodwell, G. W. Bushnell, J. Org. Chem. 1989, 54, 5871.
[6] T. Otsubo, V. Boekelheide, Tetrahedron Lett. 1975, 16, 3881.
[7] C. Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chem. Eur. J. 2011, 17, 6991.
[8] P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.
[9] M. Shibahara, M. Watanabe, T. Iwanaga, T. Matsumoto, K. Ideta, T. Shinmyozu, J. Org. Chem. 2008, 73, 4433.
[10] Y. Koyama, S. Hiroto, H. Shinokubo, Angew. Chem. Int. Ed. 2013, 125, 5852.
[11] P. M. Cotts, T. M. Swager, Q. Zhou, Macromolecules 1996, 29, 7323.
[12] U. Stalmach, B. de Boer, A. D. Post, P. F. van Hutten, G. Hadziioannou, Angew. Chem. Int. Ed. 2001, 40, 428.
[13] G. C. Bazan, R. R. Schrock, Macromolecules 1991, 24, 817.
[14] C. Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797.
[15] L. Liao, Y. Pang, L. Ding, F. E. Karasz, Macromolecules 2001, 34, 6756.
[16] S. Jacobs, W. Eevers, G. Verreyt, H. J. Geise, A. D. Groot, R. Dommisse, Synth. Met. 1993, 61, 189.
[17] N. N. Barashkov, D. J. Guerrero, H. J. Olivos, J. P. Ferraris, Synth. Met. 1995, 75, 153.
[18] L. Li, K. E. Counts, S. Kurosawa, A. S. Teja, D. M. Collard, Adv. Mater. 2004, 16, 180.
[19] L. Li, D. M. Collard, Macromolecules 2005, 38, 372.
[20] D. Zeng, J. Chen, Z. Chen, W. Zhu, J. He, F. Yu, H. Huang, H. Wu, C. Liu, S. Ren, J. Du, J. Sun, E. Xu, A. Cao, Q. Fang, Macromol. Rapid Commun. 2007, 28, 772.
[21] S. R. Meech, D. Phillips, Journal of Photochemistry 1983, 23, 193.

無法下載圖示 全文公開日期 2018/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE