簡易檢索 / 詳目顯示

研究生: 黃彥銘
Yen-Ming Huang
論文名稱: 以批次發泡法製備聚醚-聚醯胺嵌段共聚物(PEBAX)發泡材料之研究
Preparation of Polyether Block Amide (PEBAX) Foam by Batch Foaming
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 楊銘乾
Ming-Chien Yang
賴森茂
Sun-Mou Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 137
中文關鍵詞: 聚醚-聚醯胺嵌段共聚物聚醯胺抗縮劑二氧化碳批次發泡熔體強度
外文關鍵詞: polyether block amides, polyamide, shrinkage agent, carbon dioxide, batch foaming, melt strength
相關次數: 點閱:386下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚醚-聚醯胺嵌段共聚物(polyether block amide, PEBAX),是一種相對較新型且昂貴的熱塑性彈性體(TPE),具備優異的抗衝擊性與柔韌性,本研究以二氧化碳作為發泡技術探討聚醚-聚醯胺嵌段共聚物(PEBAX)的發泡過程,由於TPE發泡材料會有發泡後收縮的問題,影響到產品的外觀及成型性。一般而言可加入剛性較高的高分子改善收縮,本研究加入聚醯胺6 (PA 6)當作抗縮劑,試圖抵抗收縮效應,另一方面PA 6的成本遠較PEBAX低,也有降低成本的效果。並也添加擴鏈劑如stryrene maleic anhydride (SMA)或高分子擴鏈劑(BASF Joncryl ADR-4368C, ADR)改善泡孔型態。
本實驗首先在PEBAX中加入10至 20 wt%的PA 6抗縮,實驗結果發現雖然PEBAX與PA 6不相容,但完全不影響發泡結果,對於抗縮也有改善。但PA 6達到20 wt%時,發泡後樣品中心開始發生裂縫。另一方面,單獨添加SMA或 ADR會使PEBAX的結晶度明顯下降、黏度上升並增強機械性質,同時,單獨添加SMA或ADR對於PEBAX發泡後的抗縮也有明顯改善,而且添加ADR還能進一步提升材料熱穩定性與發泡溫度。
在最後我們探討同時加入PA 6與ADR於PEBAX中的發泡情形,發現添加ADR會主導發泡時的結構變化,同時添加ADR與20 wt% PA 6時,發泡後不僅材料中的裂縫消失,而且材料收縮的情形相較於純PEBAX,也有改善,本研究在發泡壓力13.8 MPa與發泡溫度140°C的情況下,成功製備出膨脹倍率約5.2倍,孔徑為10 μm的微發泡材料,本研究也同時證明了,添加PA 6對PEBAX發泡性能並沒有顯著的影響。


Polyether block amide (PEBAX) is one of relatively advanced and expensive of thermoplastic elastomers (TPE), known for possessing high impact resistance and great flexibility. However, shrinkage could occur when TPE is foamed, this may affect the appearance of the product and subsequent formability. In general, rigid polymers can be added to improve shrinkage. In this study, polyamide 6 (PA 6) was added as an anti-shrinkage agent to resist the foam shrinkage. Moreover, the cost of PA 6 is much lower than that of PEBAX, and the cost can also be reduced. A chain extender such as styrene maleic anhydride (SMA) or a polymer chain extender (BASF Joncryl ADR-4368C, ADR) was also added to improve the cell morphology.
In the first part of study, 10 to 20 wt% of PA 6 was added to PEBAX. The results showed that although PEBAX was incompatible with PA 6, it did not affect the foaming result, and the shrinkage ratio decreased. However, when PA 6 reached 20 wt%, the sample began to crack. On the other hand, the addition of SMA or ADR could significantly reduce the crystallinity, increase the viscosity and enhance the mechanical properties of PEBAX. The addition of SMA or ADR alone could also improve the shrinkage resistance of PEBAX after foaming and the addition of ADR could further enhance thermal stability and foaming temperature of PEBAX.
Finally, both PA 6 and ADR were added to PEBAX simultaneously. It was found that the addition of ADR dominated the structural change during foaming. When ADR and 20 wt% PA 6 were added, not only the cracks in the blends disappeared after foaming, the shrinkage ratio decreased as well in comparison with the pure PEBAX. In this study, a microcellular foam with an expansion ratio of about 5.2 times and a cell diameter of 10 μm was successfully prepared. The results of this study also proved that the addition of PA 6 has no significant effect on the PEBAX foam.

摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 第一章、緒論 1 第二章、文獻回顧 4 2.1 聚醚-聚醯胺嵌段共聚物 4 2.1.1 聚醚-聚醯胺嵌段共聚物之簡介 4 2.1.2 聚醚-聚醯胺嵌段共聚物之命名與結構 6 2.1.3 聚醚-聚醯胺嵌段共聚物之性質 9 2.2 高分子發泡材料 14 2.2.1 發泡劑 15 2.2.2 發泡機制 17 2.2.3 批次發泡 24 2.2.4 泡珠材料 26 2.2.5 熱塑性彈性體泡珠材料之困境 30 2.3 聚醚-聚醯胺嵌段共聚物/聚醯胺之共混 32 第三章、實驗方法 36 3.1 實驗藥品 36 3.2 實驗儀器 41 3.3 實驗流程與步驟 43 3.3.1 實驗流程圖 43 3.3.2 混煉不同比例之聚醚-聚醯胺嵌段共聚物及聚醯胺 44 3.3.3 混煉不同比例之聚醚-聚醯胺嵌段共聚物與擴鏈劑 44 3.3.4 混煉不同比例之聚醚-聚醯胺嵌段共聚物、聚醯胺共混物與商用擴鏈劑 44 3.3.5 批次發泡 45 3.3.6 射出成型除泡 46 3.3.7 熱壓成型 46 3.4 量測方式 47 3.4.1 示差掃描量熱儀分析 (DSC) 47 3.4.2 熱重損失分析儀 (TGA) 47 3.4.3 流變測試 (Rheology) 48 3.4.4 拉伸測試 (Tensile) 49 3.4.5 熱機械分析儀 (TMA) 50 3.4.6 掃描式電子顯微鏡 (SEM) 50 3.4.7 發泡密度(foam density)量測 51 3.4.8 泡孔孔徑(cell size)計算 51 3.4.9 泡孔密度(cell density) 51 3.4.9 膨脹倍率(expansion ratio)及收縮率(shrinkage rato)計算 52 3.4.10 泡壁厚度(cell wall thickness)計算 52 第四章、結果與討論 53 4.1聚醚-聚醯胺嵌段共聚物與聚醯胺 53 4.1.1 PEBAX/PA 6之材料性質分析 53 4.1.1.1 DSC分析 53 4.1.1.2 流變性質分析 55 4.1.1.3 拉伸性質分析 56 4.1.1.4 其他性質分析 57 4.1.2.1 含浸溫度對泡孔型態之影響 58 4.1.2.2 添加PA 6對泡孔型態之影響 62 4.2 聚醚-聚醯胺嵌段共聚物與添加劑 69 4.2.1 PEBAX/添加劑之材料性質分析 69 4.2.1.1 DSC分析 69 4.2.1.2 流變性質分析 70 4.2.1.3 拉伸性質分析 71 4.2.1.4 其他性質分析 72 4.2.2 PEBAX/添加劑之批次發泡分析 73 4.2.2.1 含浸溫度對泡孔型態之影響 73 4.3 聚醚-聚醯胺嵌段共聚物、聚醯胺與商用擴鏈劑 79 4.3.1 PEBAX/PA 6/ADR之材料性質分析 79 4.3.1.1 DSC分析 79 4.3.1.2 流變性質分析 80 4.3.1.3 拉伸性質分析 82 4.3.1.4 其他性質分析 83 4.3.2 PEBAX/PA 6/ADR之批次發泡分析 84 4.3.2.1 含浸溫度對泡孔型態之影響 84 4.3.2.2 探討泡孔型態對發泡材料發生收縮之關係 91 第五章、結論 95 參考文獻 96 附錄 A PEBAX/PA 6/擴鏈劑 固體型態 107 附錄 B PEBAX/PA 6/SMA物性分析 108 附錄 C PEBAX/PA 6/SMA批次發泡分析 111 附錄 D 含浸一小時下PEBAX/PA 6/ADR批次發泡分析 115 附錄 E PEBAX/PA 6發泡材料之初步黏合測試 119

1. Sorrentino L., Aurilia M., and Iannace S., Polymeric foams from high-performance thermoplastics. Adv. Polym. Tech., 2011; 30(3): 234-243.
2. Park C.B., Baldwin D.F., and Suh N.P., Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci., 1995; 35(5): 432-440.
3. Barzegari M.R., Hossieny N., Jahani D., and Park C.B., Characterization of hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams. Polymer, 2017; 114: 15-27.
4. Wang G., Zhao G., Dong G., Mu Y., Park C.B., and Wang G., Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. Eur. Polym. J., 2018; 103: 68-79.
5. Zhu B., Zha W., Yang J., Zhang C., and Lee L.J., Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer, 2010; 51(10): 2177-2184.
6. Raps D., Hossieny N., Park C.B., and Altstädt V., Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015; 56: 5-19.
7. Yeh S.K., Liu W.H., and Huang Y.M., Carbon Dioxide-Blown Expanded Polyamide Bead Foams with Bimodal Cell Structure. Ind. Eng. Chem. Res., 2019; 58(8): 2958-2969.
8. 陳宜斈, 以二氧化碳批次發泡不同成核劑/成熱塑性聚氨酯之微米孔洞發泡研究, 國立臺灣科技大學, 2015.
9. 越田展允, 西島浩氣, and及川政春, Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article. 2016, WO2016194737A1.
10. Zhang X., and Zhai W., Coloured TPU foam material, preparation method and use thereof, as well as method for preparing shaped body, sheet and shoe material by using same., 2016, WO2015169164A1.
11. Zhang R., Huang K., Hu S., Liu Q., Zhao X., and Liu Y., Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending. Polym Test., 2017; 63: 38-46.
12. Ahmed M.F., Li Y., Yao Z., Cao K., and Zeng C., TPU/PLA blend foams: Enhanced foamability, structural stability, and implications for shape memory foams. J. Appl. Polym. Sci., 2019; 136(17): 47416.
13. Xu D., Yu K., Qian K., and Park C.B., Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2. J. Thermoplast. Compos. Mater., 2018; 31(1): 61-78.
14. Hossieny N., Shaayegan V., Ameli A., Saniei M., and Park C.B., Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer, 2017; 112: 208-218.
15. Armstrong S., Freeman B., Hiltner A., and Baer E., Gas permeability of melt-processed poly(ether block amide) copolymers and the effects of orientation. Polymer, 2012; 53(6): 1383-1392.
16. Bondar V.I., Freeman B.D., and Pinnau I., Gas transport properties of poly(ether-b-amide) segmented block copolymers. J. Polym. Sci. B Polym. Phys., 2000; 38(15): 2051-2062.
17. Eustache R.P., and Fakirov S., Chap 10, Poly(ether-b-amide) thermoplastic elastomers: structure, properties, and applications, in: Fakirov S., editor. Handbook of Condensation Thermoplastic Elastomers. Germany: Wiley‐VCH, 2006. p.263-281.
18. Deleens G., New generation of thermoplastic elastomers the polyether block amide (PEBA). In: 39th Ann. Tech. Conf. of SPE, Boston, 1981. p.419-420.
19. Sheth J.P., and Wilkes G.L., Chap 11, Semicrystalline segmented poly(ether-b-amide) copolymers: overview of solid-state structure-property relationships and uniaxial deformation behavior, in: Fakirov S., editor. Handbook of Condensation Thermoplastic Elastomers. Germany: Wiley‐VCH, 2006. p.283-323.
20. Sheth J.P., Xu J., and Wilkes G.L., Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAX® thermoplastic elastomers. Polymer, 2003; 44(3): 743-756.
21. Konyukhova E.V., Buzin A.I., and Godovsky Y.K., Melting of polyether block amide (Pebax): the effect of stretching. Thermochim. Acta, 2002; 391(1-2): 271-277.
22. Karger‐Kocsis D.J., and Fakirov S., Polymer blends containing thermoplastic elastomers of the condensation and addition types, in: Fakirov S., editor. Handbook of Condensation Thermoplastic Elastomers. Germany: Wiley‐VCH, 2006. p.435-472.
23. BASF. Infinergy: BASF develops the first expanded TPU., https://www.plasticsportal.net/wa/plasticsEU~ru_RU/portal/show/common/plasticsportal_news/2013/13_301?doc_lang=en_GB.
24. Hatfield G.R., Guo Y., Killinger W.E., Andrejak R.A., and Roubicek P.M., Characterization of structure and morphology in two poly(ether-block-amide) copolymers. Macromolecules, 1993; 26(24): 6350-6353.
25. Hatfield G.R., Bush R.W., Killinger W.E., and Roubicek P.M., Phase modification and polymorphism in two poly(ether-block-amide) copolymers. Polymer, 1994; 35(18): 3943-3947.
26. Arkema. PEBAX product., www.pebax.com acceessed on July 1, 2019
27. Maréchal E., Block copolymers with polyethers as flexible blocks, in: Calleja F.B., and Roslaniec Z., editor. Block Copolymers. New York: CRC Press, 2000. p. 29-64
28. Boulares A., Tessier, M. and Maréchal E., Synthesis and characterization of poly(copolyethers-block-polyamides) II. Characterization and properties of the multiblock copolymers. Polymer, 2000; 41(10): 3561-3580.
29. Adams R.K., and Hoeschele G.K., Chap. 8, Thermoplastic polyester elastomers, in: Schroeder H.E., Holden G., and Legge N.R., editor. Thermoplastic elastomers: a comprehensive review. Hanser Publishers: Munich, 1988. p.163
30. Gaymans R.J., Schwering P., and Haan J.L., Nylon 46-polytetramethylene oxide segmented block copolymers. Polymer, 1989; 30: 974-977.
31. Yu Y.C., and Jo W.H., Segmented block copolyetheramides based on nylon 6 and polyoxypropylene. II. Structure and properties. J. Appl. Polym. Sci., 1995; 56(8): 895-904.
32. Barbi V., Funari S.S., Gehrke R., Scharnagl N., and Stribecket N., SAXS and the Gas transport in polyether-block-polyamide copolymer membranes. Macromolecules, 2003; 36(3): 749-758.
33. Bondar V.I., Freeman B.D., and Pinnau I., Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers J. Polym. Sci. B Polym. Phys., 1999; 37(17): 2463-2475.
34. Thomas S., and Visakh P.M., Chap. 1, Engineering and specialty thermoplastics: polyethers and polyesters. in: Thomas S., and Visakh P.M., editor. Handbook of Engineering and Specialty Thermoplastics, Germany: Wiley‐VCH, 2011.p.1-14.
35. Sheth J.P., Xu J., and Wilkes G.L., Solid state structure-property behavior of semicrystalline poly(ether-block-amide) PEBAX® thermoplastic elastomers. Polymer, 2002; 44(3): 743-756.
36. Kear K.E., Chap. 4, Properties of thermoplastic elastomers, in: Kear K.E., editor. Developments in thermoplastic elastomers. Ohio: Smithers Rapra Publishing, 2003, p.11.
37. Alberola N., Micromechanical properties of polyether block amide copolymers. J. Appl. Polym. Sci., 1988; 36(4): 787-804.
38. Garrett J.T., Runt J., and Lin J.S., Microphase separation of segmented poly(urethane urea) block copolymers. Macromolecules, 2000; 33(17): 6353-6359.
39. Bornschlegl E., Goldbach G., and Meyer K., Structure and properties of segmented polyamides. Progr Colloid & Polymer Sci, 1985; 71:119-124.
40. Miller J.A., Lin S.B., Hwang K.K.S., Wu K.S., Gibson P.E., and Cooper S.L., Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules, 1985; 18(1): 32-44.
41. Chau K.W., and Geil P.H., Domain morphology in polyurethanes. Polymer, 1985; 26(4): 490-500.
42. Cipriani E., Zanetti M., Brunella V., Costa L., and Bracco P., Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology. Polym. Degrad. Stab., 2012; 97(9): 1794-1800.
43. Yanagihara Y., Osaka N., Murayama S., and Saito H., Thermal annealing behavior and structure development of crystalline hard segment domain in a melt-quenched thermoplastic polyurethane. Polymer, 2013; 54(8): 2183-2189.
44. Todros S., Natali A.N., Piga M., Giffin G.A., Pace G., and Noto V.D., Interplay between chemical structure and ageing on mechanical and electric relaxations in poly(ether-block-amide)s. Polym. Degrad. Stab., 2013; 98(6): 1126-1137.
45. Chen W.M., Yang M.C., Hong S.G., and Hsieh Y.S., Effect of poly(styrene-co-maleic anhydride) on physical properties and crystalline behavior of nylon-6/PEBA blends. J. Polym. Res., 2017; 24(3): 40.
46. Chen W.M., Yang M.C., Hong S.G., and Hsieh Y.S., Effect of soft segment content of Pebax® Rnew on the properties of Nylon-6/SMA/PEBA blends. J. Polym. Res., 2019; 26(2): 25.
47. Baker R.W., Future directions of membrane gas separation technology. Ind. Eng. Chem. Res., 2002; 41(6): p. 1393-1411.
48. Nunes S.P., and Peinemann K.V., Chap. 7, Gas separation with membranes, in: Nunes S.P., and Peinemann K.V., editor. Membrane technology in the chemical industry second, Germany: Wiley‐VCH, 2007, p.53-90.
49. Chen J.C., Feng X., and Penlidis A., Gas permeation through poly(ether‐b‐amide) (PEBAX 2533) block copolymer membranes. Sep. Sci. Technol., 2005; 39(1): 149-164.
50. Lee S.T., and Park C.B., Chap.1, Introduction, in: Lee S.T., and Park C.B., editor. Foam Extrusion: Principles and Practice, Second Edition. New York: CRC Press., 2014. P.1-19.
51. Lee L.J., Zeng C., Cao X., Han X., Shen J., and Xu G., Polymer nanocomposite foams. Compos. Sci. Technol., 2005; 65(15-16): 2344-2363.
52. Notario B., Pinto J., and Rodriguez-Perez M.A., Nanoporous polymeric materials: A new class of materials with enhanced properties. Prog. Mater. Sci., 2016; 78-79: 93-139.
53. Polymer Foam Market-Global Forecast to 2022., https://www.marketsandmarkets.com/Market-Reports/foams-market-1011.html.
54. Okolieocha C., Raps D., Subramaniam K., andAltstädt V., Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. Eur. Polym. J., 2015; 73: 500-519.
55. 廖宗恩, 以固態發泡法製備聚甲基丙烯酸甲酯奈米泡材, 國立臺北科技大學, 2016.
56. Wong A., Mark L.H., Hasan M.M., and Park C.B., The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. J. Supercrit. Fluids., 2014; 90: 35-43.
57. Heck Rhomie L., A review of commercially used chemical foaming agents for thermoplastic foams. J. Vinyl Addit. Techn., 1998; 4(2): 113-116.
58. Liu K., and Kiran E., Pressure-induced phase separation in polymer solutions: kinetics of phase separation and crossover from nucleation and growth to spinodal decomposition in solutions of polyethylene in n-pentane. Macromolecules, 2001; 34(9): 3060-3068.
59. Melnichenko Y.B., Kiran E., Wignall G.D., Heath K.D., Salaniwal S., Cochran H.D., and Stamm M., Pressure- and temperature-induced transitions in solutions of poly(dimethylsiloxane) in supercritical carbon dioxide. Macromolecules, 1999; 32(16): 5344-5347.
60. Shunahshep S., and Koelling K.W., Steady flow simulation of a polymer‐diluent solution through an abrupt axisymmetric contraction using internally consistent rheological scaling. J. Appl. Polym. Sci., 2007; 106(2): 1053-1074.
61. Reger D.L., Goode S.R., and Ball D.W., Chap. 20, Chenistry of hydrogen, elements in groups 3A through 6A, and the noble gases, in: Reger D.L., Goode S.R., and Ball D.W., editor. Chemistry: Principles and Practice. New York: Cengage Learning, 2009. p.844
62. Solheim E., Chap. 1, The montreal protocol, in: Handbook of the Montreal protocol on substances that deplete the ozone layer. United Nations Environment Programme: Ozone Secretariat, 2000. p.1-48.
63. Goel S.K., and Beckman E.J., Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polym. Eng. Sci., 1994; 34(14): 1137-1147.
64. Goel S.K., and Beckman E.J., Generation of microcellular polymeric foams using supercritical carbon dioxide. II: cell growth and skin formation. Polym. Eng. Sci., 1994; 34(14): 1148-1156.
65. Sato Y., Yurugi M., Fujiwara K., Takishima S., and Masuokaet H., Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilibr., 1996; 125(1-2): 129-138.
66. Sato Y., Yurugi M., Fujiwara K., Takishima S., and Masuoka H., Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibr., 1999; 162(1-2): 261-276.
67. Chaudhary B.I., and Johns A.I., Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene. J. Cell. Plast., 1998; 34(4): 312-328.
68. Okamoto K.T., Microcellular processing, Hanser Publications, 2003.
69. Xu Z.M., Jiang X.L., Hu G.H., Zhao L., Zhu Z.N., and Yuan W.K., Foaming of polypropylene with supercritical carbon dioxide. J. Supercrit. Fluids., 2007; 41(2): 299-310.
70. Colton J.S., and Suh N.P., Nucleation of microcellular foam: theory and practice. Polym. Eng. Sci., 1987; 27(7): 500-503.
71. Gibbs J.W., The scientific papers of J.. Willard Gibbs: vol. I. thermodynamics, elementary principles in statistical mechanics and vector analysis. Am. J. Phys., 1962; 30: 313.
72. Leung S.N., Park C.B., and Li H., Effects of nucleating agents shapes and interfacial properties on cell nucleation. J.Cell. Plast., 2010; 46(5): 441-460.
73. Colton J.S., and Suh N.P., The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polym. Eng. Sci., 1987; 27(7): 485-492.
74. Colton J.S., and Suh N.P., The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polym. Eng. Sci., 1987; 27(7): 493-9.
75. Colton J.S., and Suh N.P., Nucleation of microcellular foam: Theory and practice. Polym. Eng. Sci., 1987; 27(7): 500-3.
76. 陳瀅如, 以超臨界二氧化碳發泡製備石墨烯/熱塑性聚氨酯之微奈米孔洞發泡材料, 國立臺北科技大學, 2015.
77. Han J.H., and Han C.D., Bubble nucleation in polymeric liquids. II. theoretical considerations. J. Polym. Sci. B Polym. Phys., 1990; 28(5): 743-761.
78. Lee S.T., Shear effects on thermoplastic foam nucleation. Polym. Eng. Sci., 1993; 33(7): 418-422.
79. Leung S.N., Wong A., Park C.B., and Zong J.H., Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. J. Appl. Polym. Sci., 2008; 108(6): 3997-4003.
80. Wilt P.M., Nucleation rates and bubble stability in water-carbon dioxide solutions. J. Colloid. Interface. Sci., 1986; 112(2): 530-538.
81. Leung S.N., Wong A., Wang L.C., and Park C.B., Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J. Supercrit. Fluid., 2012; 63: 187-198.
82. Cole R., Boiling Nucleation. Advances in Heat Transfer, 1974; 10: 85-166.
83. Leung S.N.S., Mechanisms of cell nucleation, growth, and coarsening in plastic foaming: Theory, simulation, and experiment. Ph.D. Dissertation, Department of Mechanical and Industrial Engineering, University of Toronto, 2009.
84. Fletcher N.H., Size effect in heterogeneous nucleation. J. Chem. Phys., 1958; 29(3): 572-576.
85. Moore G.R., Vaporization of superheated drops in liquids. AICHE J., 1959; 5(4): 458-466.
86. Jarvis T.J., Donohue M.D., and Katz J.L., Bubble nucleation mechanisms of liquid droplets superheated in other liquids. J. Colloid Interface Sci., 1975; 50(2): 359-368.
87. Sun X., Liu H., Li G., Liao X., and He J., Investigation on the cell nucleation and cell growth in microcellular foaming by means of temperature quenching. J. Appl. Polym. Sci., 2004; 93(1): 163-171.
88. Leung S.N., Park C.B., Xu D., Li H., and Fenton R.G., Computer simulation of bubble-growth phenomena in foaming. Ind. Eng. Chem. Res., 2006; 45(23): 7823-7831.
89. Costeux S., Khan I., Bunker S.P., and Jeon H.K., Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. J. Cell. Plast., 2014; 51(2): 197-221.
90. Tsivintzelis I., Angelopoulou A.G., and Panayiotou C., Foaming of polymers with supercritical CO2: An experimental and theoretical study. Polymer, 2007; 48(20): 5928-5939.
91. Costeux S., CO2-blown nanocellular foams. J. Appl. Polym. Sci., 2014; 131(23): 41293
92. Mi H.Y., Jing X., Salick M.R., Crone W.C., Peng X.F., and Turnget L.S., Approach to fabricating thermoplastic polyurethane blends and foams with tunable properties by twin-screw extrusion and microcellular injection molding. Adv. Polym. Tech., 2014; 33(1): 21380.
93. White L.J., Hutter V., Tai H., Howdle S.M., and Shakesheff K.M., The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater, 2012; 8(1): 61-71.
94. Matuana L.M., Park C.B., andBalatinecz J.J., Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polym. Eng. Sci., 1997; 37(7): 1137-1147.
95. Naguib H.E., Park C.B., and Reichelt N., Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. J. Appl. Polym. Sci., 2004; 91(4): 2661-2668.
96. Frerich S.C., Biopolymer foaming with supercritical CO2—Thermodynamics, foaming behaviour and mechanical characteristics. J. Supercrit. Fluids, 2015; 96: 349-358.
97. Guo Y.T., Hossieny N., Chu R.K.M., Park C.B., and Zhou N., Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chem. Eng. J., 2013; 214: 180-188.
98. Lee E.K., Novel manufacturing processes for polymer bead foams Ph.D. Dissertation, Department of Mechanical and Industrial Engineering, University of Toronto, 2010.
99. Rossacci J., and Shivkumar S., Bead fusion in polystyrene foams. J. Mater. Sci., 2003; 38(2): 201-206.
100. Kuwabara H., andSudo Y., Preliminarily foamed particles of non-crosslinked polypropylene-type resin. 1986, US4587270A
101. Takeda N., and Nakayama Y., Pre-expanded polyethylene beads and process for producing the same thereof. 2000, US6028121
102. Hossieny N., Development of expanded thermoplastic polyurethane bead foams and their sintering mechanism Ph.D. Dissertation, Department of Mechanical and Industrial Engineering, University of Toronto, 2014.
103. Zhai W., Kim Y.W., Jung D.W., and Park C.B., Steam-chest molding of expanded polypropylene foams. 2. mechanism of interbead bonding. Ind. Eng. Chem. Res., 2011; 50(9): 5523-5531.
104. Ge C., Ren Q., Wang S., Zheng W., Zhai W., and Park C.B., Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chem. Eng. Sci., 2017; 174: 337-346.
105. Nakai S., Taki K., Tsujimura I., and Ohshima M., Numerical simulation of a polypropylene foam bead expansion process. Polym. Eng. Sci., 2008; 48(1): 107-115.
106. 原田聖一朗, 大木裕美子, 高石彰一, 藤沢剛士, and石井忠幸, Expandable beads, molded body using the same, and production method for molded body. 2011, WO2011/019057Al.
107. Doriat C., A start-up and five partners from industry and research are developing a steamless process chain for energy-efficient processing and in-situ functionalization of particle foams, in Kunststoffe international. Hanser., 2017. p.17-20.
108. Zhai W., Feng W., Ling J., and Zheng W., Fabrication of lightweight microcellular polyimide foams with three-dimensional shape by CO2 foaming and compression molding. Ind. Eng. Chem. Res., 2012; 51(39): 12827-12834.
109. Ziegler M. , Kauffmann A., and Hofmann K., Method and device for thermally bonding expanded polymer particles. 2001, WO2001064414A1.
110. Yang G., Su J., Gao J., Hu X., Geng C., and Fu Q., Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. J. Supercrit. Fluids, 2013; 73: 1-9.
111. Zhao D., Wang G., and Wang M., Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. J. Appl. Polym. Sci., 2018; 135(25): 46327.
112. Xu D., Yu K., Qian K., and Park C.B., Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2. J. Thermoplast. Compos. Mater., 2018; 31(1): 61-78.
113. Fox T.G., Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc., 1956; 1: 123.
114. Barlow J.W., and Paul D.R., Polymer blends and alloys—a review of selected considerations. Polym. Eng. Sci., 1981; 21(15): 985-996.
115. Leszek A.U., Mukhopadhyay P., and Gupta R.K., Chap. 1, Polymer blends: introduction, in: Utracki L.A., and Wilkie C.A., editor, Polymer Blends Handbook. Dordrecht: Springer, 2014. p.3-170.
116. Laura D.M., Keskkula H., Barlow J.W., and Paul D.R., Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer, 2002; 43(17): 4673-4687.
117. Akkapeddi M.K., Glass fiber reinforced polyamide-6 nanocomposites. Polym. Composites, 2000; 21(4): 576-585.
118. Liu T.X., Liu Z.H., Ma K.X., Shen L., Zeng K.Y., and He C.B., Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Compos. Sci. Technol., 2003; 63(3-4): 331-7.
119. Varlot K., Reynaud E., Kloppfer M. H., Vigier G., and Varlet J., Clay-reinforced polyamide: Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae. J. Polym. Sci. B Polym. Phys., 2001; 39(12): 1360-1370.
120. Wu T. M., and Wu J. Y., Structural analysis of polyamide/clay nanocomposites. J. Macromol. Sci. B, 2002; 41 B(1): 17-31.
121. Wu S. H., Wang F. Y., Ma C. C., Chang W. C., Kuo C. T., Kuan H. C., and Chen W. J., Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Mater. Lett., 2001; 49(6): 327-333.
122. Laun H.M., and Schuch H., Transient elongational viscosities and drawability of polymer melts. J. Rheol., 1989; 33(1): 119-175.
123. Pop-Iliev R., Liu F., Liu G., and Park C.B., Rotational foam molding of polypropylene with control of melt strength. Adv. Polym. Tech., 2003; 22(4): 280-296.
124. Vlachopoulos J., and Strutt D., The role of rheology in polymer extrusion. In: New Technology for Extrusion Conference. Italy, Milan, 2003. p. 20-21.
125. Frankland J., What about melt strength. Plastics Technology, 2013.
126. Wagner M.H., Schulze V., and Göttfert A., Rheotens-mastercurves and drawability of polymer melts. Polym. Eng. Sci., 1996; 36(7): 925-935.
127. Münstedt H., Extensional rheology and processing of polymeric materials. Int. Polym. Proc., 2018; 33: 594-618.
128. Kim E.S., Park H.E., and Lee P.C., In situ shrinking fibers enhance strain hardening and foamability of linear polymers. Polymer, 2018; 136: 1-5.
129. Spitael P., and Macosko C.W., Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci., 2004; 44(11): 2090-2100.
130. Kim B.K., and Park S.J., Reactive melt blends of nylon with poly(styrene‐co‐maleic anhydride). J. Appl. Polym. Sci., 1991; 43(2): 357-363.
131. Tazumi K., and Shindo M., polyamide foam sheet by reactive extrusion, in: SPE FOAMS 2015, Kyoto, Japan, 2015.
132. Kriha O., Hahn K., Desbois P., Warzelhan V., Ruckdäschel H., Hofmann M., Exner C., and Hingmann R., Expandable pelletized polyamide material. 2011, US20110294910A1.
133. Dong L., Xiong C., Wang T., Liu D., Lu S., and Wang Y., Preparation and properties of compatibilized PVC/SMA-g-PA6 blends. J. Appl. Polym. Sci., 2004; 94(2): 432-439.
134. Villalobos M., Awojulu A., Greeley T., Turco G., and Deeter G., Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 2006; 31(15): 3227-3234.
135. Yamakawa H., and Miyata H., High performance thermoplastic aramid elastomers: synthesis, properties, and applications, in: Fakirov S., editor. Handbook of Condensation Thermoplastic Elastomers. Wiley‐VCH, 2006. p. 141-166.
136. Bureau M.N., Denault J., Cole K.C., and Enright G.D., The role of crystallinity and reinforcement in the mechanical behavior of polyamide‐6/clay nanocomposites. Polym. Eng. Sci., 2002; 42(9): 1897-1906.
137. Gurato G., Fichera A., Grandi F.Z., Zannetti R., and Canal P., Crystallinity and polymorphism of 6‐polyamide. Die Makromolekulare Chemie, 1974; 175(3): 953-975.
138. Fornes T.D., and Paul D.R., Crystallization behavior of nylon 6 nanocomposites. Polymer, 2003; 44(14): 3945-3961.
139. Song Y., Yamamoto H., and Nemoto N., Segmental orientations and deformation mechanism of poly(ether-block-amide) films. Macromolecules, 2004; 37(16): 6219-6226.
140. Bowman I.J.W., Brown D.S., and Wetton R.E., Crystal density, crystallinity and heat of fusion of poly (tetramethylene oxide). Polymer, 1969; 10(C): 715-718.
141. 彭昇平, 以超臨界二氧化碳發泡技術製備熱塑性聚氨酯微米泡材. 國立臺北科技大學, 2014.
142. Kumar V., and Suh N.P., A process for making microcellular thermoplastic parts. Polym. Eng. Sci., 1990; 30(20): 1323-1329.
143. 高木翔太, 及川政春, Foamed particles and molded article thereof. 2018, TW201819517A.
144. Ellis T.S., Miscibility and immiscibility of polyamide blends. Macromolecules, 1989; 22(2): 742-754.
145. Kyotani M., Solution crystallization of blends of nylon 6 and nylon 12. J. Macromol. Sci. B, 1982; 21(2): 219-230.
146. Ong E.S., Kim Y., and Williams H.L., Dynamic mechanical properties of some nylons and their blends. J. Appl. Polym., 1986; 31(2): 367-383.
147. Lee S.T., and Scholz D.P.K., Polymeric foams : technology and developments in regulation, process, and products. Boca Raton: CRC Press, 2008.
148. Chen L., Wang X., Straff R., and Blizard K., Shear stress nucleation in microcellular foaming process. Polym. Eng. Sci., 2002; 42(6): 1151-1158.
149. 劉威翔, 以批次發泡法製備聚醯胺泡珠材料之研究 國立臺灣科技大學, 2018.
150. Cho J.W., andPaul D.R., Nylon 6 nanocomposites by melt compounding. Polymer, 2001; 42(3): 1083-1094.
151. Härth M., Kaschta J., and Schubert D.W., Shear and elongational flow properties of long-chain branched poly(ethylene terephthalates) and correlations to their molecular structure. Macromolecules, 2014; 47(13): 4471-4478.
152. Dedecker K., and Groeninckx G., Interfacial Graft Copolymer Formation during Reactive Melt Blending of Polyamide 6 and Styrene-Maleic Anhydride Copolymers. Macromolecules, 1999; 32(8): 2472-2479.
153. Okamoto M., Nam P.H., Maiti P., Kotaka T., Nakayama T., Takada M., Ohshima M., Usuki A., Hasegawa N., and Okamoto H., Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Letters, 2001; 1(9): 503-505.
154. Xu M., Yan H., He Q., Wan C., Liu T., Zhao L., andPark C.B., Chain extension of polyamide 6 using multifunctional chain extenders and reactive extrusion for melt foaming. Eur. Polym. J., 2017; 96: 210-220.
155. Nunes E.C.D., Souza A.G., and Rosa D.S., Effect of the Joncryl® ADR compatibilizing agent in blends of poly(butylene adipate-co-terephthalate)/poly(lactic acid). Macromol. Symp., 2019; 383(1): 1800035.
156. Yu T., Chen J. S., Wu F. M., and Rocks J., Crosslinking of polyamide 6 by reactive processing. Mater. Sci. Forum, 2015; 815: 576-582.
157. Dogan S.K., Reyes E.A., Rastogi S., and Ozkoc G., Reactive compatibilization of PLA/TPU blends with a diisocyanate. J. Appl. Polym. Sci., 2014; 131(10): 40251.
158. Arruda L.C., Magaton M., Bretas R.E.S., and Ueki M.M., Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Test., 2015; 43: 27-37.
159. Yang C.T., Lee K.L., and Lee S.T., Dimensional Stability of LDPE Foams: Modeling and Experiments. J. Cell. Plast., 2002; 38(2): 113-128.
160. Nauta W.J., Stabilisation of low density, closed cell polyethylene foam. Ph.D. Dissertation, Department of Chemical Technology, University of Twente, 2000.

無法下載圖示 全文公開日期 2024/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE