簡易檢索 / 詳目顯示

研究生: 王志盟
Zhi-Meng Wang
論文名稱: 羧酸官能基濃度對於釔鋁石榴石粉末形貌及螢光性質之研究
Correlation of the concentration of carboxyl functional group, morphology and photoluminescence properties for YAG powder
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 顏怡文
Yee-wen Yen
段維新
Wei-Hsing Tuan
陳錦毅
Chin-Yi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 噴霧乾燥法釔鋁石榴石檸檬酸
外文關鍵詞: Ce, Yttrium aluminum, Phosphors, Spray drying, Photoluminescence
相關次數: 點閱:174下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈰摻雜之釔鋁石榴石(Cerium doped yttrium aluminum garnet, YAG:Ce)螢光粉為現今最具應用之螢光粉材料,透過噴霧乾燥法方式,進行連續式螢光粉生產之研究,本實驗透過添加具有羧基(-COO-)之有機酸進行前驅物溶液改質,利用金屬離子與羧基錯合程度及有機酸燃燒熱差異,達到控制噴霧乾燥之粉體形貌、晶粒大小、粒徑分佈及螢光性質目的。
    此研究分別添加具備一對羧基之甲酸、二對羧基之草酸及三對羧基之檸檬酸於前驅物溶液中,透過甲酸、草酸及檸檬酸具備之不同羧基(-COO-)數量對於金屬離子進行錯合反應,控制噴霧乾燥粉體之形貌為光滑球體、表面凹陷球體及皺褶球體,使經一階段噴霧乾燥粉體於空氣下進行1300 ℃煆燒程序,生成鈰摻雜之釔鋁石榴石螢光粉;粉體藉由X光晶體繞射分析儀(XRD)進行晶相鑑定及透過Scherrer 方程式進行晶粒大小之運算、傅立葉轉換紅外線光譜(FTIR)進行粉體之官能基鑑定、聚焦離子束顯微系統(FIB)進行粉體之截面分析、場發射穿透式電子顯微鏡(FE-TEM) 進行粉體之形貌分析、螢光光譜儀(PL)進行之光致螢光性質分析。


    The potential phosphor particles of Ce-doped yttrium aluminum garnet (YAG) have been prepared using spray drying. Spray drying offers the advantage of homogenous particles and regular shape comparing to the common method of solid state reaction. It is well known that the acids plays the important role on the particle shape for the spray dried powders. So, three common acids of formic acid, oxalic acid, and citric acid were used to prepare Ce-doped YAG powders. The citric acid-treated powder exhibits the highest photoluminescence intensity than the formic acid and oxalic acid-treated powders because it exhibits the smoother surface than that of the formic acid and oxalic acid-treated powders. In addition, the formation mechanisms of various Ce-doped YAG powders were discussed.

    摘要 I Abstract II 第一章 緒論 1 第二章 文獻回顧 3 2.1釔鋁石榴石晶體結構 3 2.1.1 發光機制 4 2.1.2 釔鋁石榴石物理性質 8 2.2 釔鋁石榴石應用 9 2.2.1 陰極射線管(Cathode ray tube) 9 2.2.2 固態雷射(Solid state laser) 10 2.2.3 發光二極體 (Light emitting diode) 11 2.2.4白光發光二極體(White light emitting diode) 13 2.3 釔鋁石榴石粉末製程 14 2.3.1固態反應合成法(Solid-state reaction) 14 2.3.2化學共沉澱法(Co-precipitation method) 16 2.3.3水熱/溶劑熱合成法(Hydro/Solvothermal method) 18 2.3.4噴霧熱裂解法(Spray pyrolysis) 21 2.3.5噴霧乾燥法(Spray drying) 24 2.4噴霧乾燥機制 31 2.4.1霧化程序及粒徑大小控制 33 2.4.2粉末形貌控制 36 2.5 YAG:Ce螢光粉發光性質影響因素 40 2.5.1有機酸改質對於粉末性質影響 40 2.5.2粉末形貌對於發光性質之影響 42 2.5.3羧酸官能基之還原反應 44 第三章 實驗目的與方法 45 3.1 實驗設計 45 3.2 YAG:Ce螢光粉之製備 47 3.3 實驗藥品 48 3.4 實驗儀器設備 49 3.5 樣品性質及分析方法 50 3.5.1 X光晶體繞射分析儀 50 3.5.2 傅立葉轉換紅外線光譜儀 52 3.5.3 X射線光電子能譜儀 52 3.5.4 聚焦離子束顯微系統(Focused Ion Beam and Electron Beam System) 53 3.5.5 螢光光譜儀 (Fluorescence spectrometer) 55 第四章 結果 56 4.1 YAG:Ce前驅物溶液之性質分析 56 4.1.1前驅物溶液之紅外光譜分析 56 4.1.2前驅物溶液之黏度分析 58 4.2 YAG:Ce螢光粉體之性質分析 59 4.2.1 X光繞射晶相鑑定分析 59 4.2.2掃描式電子顯微鏡表面形貌分析與粒徑分析 61 4.2.3螢光光譜分析 65 4.2.4化學分析電子光譜分析 67 第五章 討論 72 5.1不同羧酸官能基對於金屬離子之錯合反應 72 5.2羧基對於粉末大小之影響 74 5.3羧基對於鈰離子還原之影響 76 5.4羧酸官能基對於螢光性質之影響 78 5.5 粉末成形機制探討 79 第六章 結論 80 第七章 未來工作 81 參考文獻 82

    [1] S. Kostić, Z. Lazarević, V. Radojević, A. Milutinović, M. Romčević, N. Romčević, A. Valčić, Study of structural and optical properties of YAG and Nd: YAG single crystals, Mater. Res. Bull., 63 (2015) 80-87.
    [2] 劉偉仁, LED螢光粉技術, 1 ed., 五南圖書出版股份有限公司2014.
    [3] S. Ye, F. Xiao, Y. Pan, Y. Ma, Q. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Mater. Sci. Eng., 71 (2010) 1-34.
    [4] G. Blasse, A. Bril, Investigation of some Ce3+‐activated phosphors, J. Chem. Phys., 47 (1967) 5139-5145.
    [5] L. Mancic, K. Marinkovic, B. Marinkovic, M. Dramicanin, O. Milosevic, YAG: Ce3+ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution, J. Eur. Ceram. Soc., 30 (2010) 577-582.
    [6] H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, A. Kaminskii, The physical properties of composite YAG ceramics, Laser Phys., 15 (2005) 1338.
    [7] H. Fadlalla, C. Tang, Preparation of Tb3+-activated Y3Al5O12 monocrystalline nanoparticles using solution combustion technique, Opt. Mater., 31 (2008) 401-404.
    [8] D. Maiti, D. Rajagopal, A. Kar, P.B. Ramteke, S.G. Koolagudi, Simulation of cathode ray tube, IEEE, 2017, pp. 249-253.
    [9] Q.-H. Wang, J. Cheng, S.-T. Wu, C. Ge, G. Fang, K. Qi, H. Rao, Cathode ray tube addressed liquid crystal light valve projection display, Opt. Eng., 42 (2003) 837-840.
    [10] W. Jing, F. Li, S. Yu, X. Ji, T. Xu, J. Zhang, Z. Pan, Z. Yuan, B. Kang, J. Deng, High efficiency synthesis of Nd: YAG powder by a spray co-precipitation method for transparent ceramics, J. Eur. Ceram. Soc., 38 (2018) 2454-2461.
    [11] N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, M. Yamada, Solid-state lighting research and development multi-year program plan, US Department of Energy, (2014).
    [12] T.-Y. Seong, J. Han, H. Amano, H. Morkoç, III-Nitride based light emitting diodes and applications, Springer2013.
    [13] M. Sato, S. Kim, Y. Shimomura, T. Hasegawa, K. Toda, G. Adachi, Rare earth-doped phosphors for white light-emitting diodes, Elsevier2016, pp. 1-128.
    [14] G. Ulahannan, Synthesis and sintering of translucent yttrium aluminium garnet, 2014.
    [15] D. Valiev, T. Han, V. Vaganov, S. Stepanov, The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor, J. Phys. Chem. Solids, 116 (2018) 1-6.
    [16] L. Jiang, X. Zhang, H. Tang, S. Zhu, Q. Li, W. Zhang, X. Mi, L. Lu, X. Liu, A Mg2+-Ge4+ substituting strategy for optimizing color rendering index and luminescence of YAG:Ce3+ phosphors for white LEDs, Mater. Res. Bull., 98 (2018) 180-186.
    [17] V. Osipov, R. Maksimov, V. Shitov, K. Lukyashin, G. Toci, M. Vannini, M. Ciofini, A. Lapucci, Fabrication, optical properties and laser outputs of Nd:YAG ceramics based on laser ablated and pre-calcined powders, Opt. Mater., 71 (2017) 45-49.
    [18] Ł. Zych, R. Lach, The effect of powders homogenisation conditions on the synthesis of yttrium aluminium garnet (YAG) by a solid-state reaction, Ceram. Int., 43 (2017) 4029-4036.
    [19] Z. Song, J. Liao, X. Ding, X. Liu, Q. Liu, Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, J. Cryst. Growth., 365 (2013) 24-28.
    [20] W. Jing, F. Li, S. Yu, X. Ji, T. Xu, J. Zhang, Z. Pan, Z. Yuan, B. Kang, J. Deng, High efficiency synthesis of Nd:YAG powder by a spray co-precipitation method for transparent ceramics, J. Eur. Ceram. Soc., 38 (2018) 2454-2461.
    [21] H. Girish, C. Zhu, F. Ma, G. Shao, Synthesis of cubic yttrium aluminum garnet (YAG) powders by co-precipitation and two-step calcinations, AIP Conf. Proc., AIP Publishing, 2017, pp. 020019.
    [22] C. Ye, X. Yue, H. Zong, G. Liao, H. Ru, In-situ synthesis of YAG@Si3N4 powders with enhanced mechanical properties, J. Alloy. Compd., 731 (2018) 813-821.
    [23] M. Rahmani, O. Mirzaee, M. Tajally, M.R. Loghman-Estarki, A comparative study of synthesis and spark plasma sintering of YAG nano powders by different co-precipitation methods, Ceram. Int., 44 (2018) 10035-10046.
    [24] M. Rahmani, O. Mirzaee, M. Tajally, M.R. Loghman-Estarki, The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals, Ceram. Int., 43 (2017) 12563-12571.
    [25] B. Ma, B. Wang, W. Zhang, N. Wei, T. Lu, J. He, Promotion of powder crystallinity and its influence on the properties of Nd:YAG transparent ceramics, Opt. Mater., 64 (2017) 384-390.
    [26] K.S. Chandra, M. Monalisa, G. Ulahannan, D. Sarkar, H.S. Maiti, Preparation of YAG nanopowder by different routes and evaluation of their characteristics including transparency after sintering, J. Aust. Ceram. Soc., 53 (2017) 751-760.
    [27] J. Dai, Y. Pan, W. Wang, W. Luo, T. Xie, H. Kou, J. Li, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders, Opt. Mater., 73 (2017) 38-44.
    [28] M.M. Xu, Z.J. Zhang, J.J. Zhu, J.T. Zhao, X.Y. Chen, Solvothermal synthesis and luminescence properties of yttrium aluminum garnet monodispersed crystallites with well-developed faces, J. Phys. Chem. C, 118 (2014) 27000-27009.
    [29] L. Wang, F. Zhao, X. Yang, C. Pan, H. Huang, Property of YAG:Ce3+ nanophosphors prepared by solvothermal method using triethylene-tetramine as a reaction solvent, RSC Adv., 5 (2015) 26339-26345.
    [30] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time, Chem. Rev., 103 (2003) 663-702.
    [31] P. Nørby, K.M. Jensen, N. Lock, M. Christensen, B.B. Iversen, Continuous Flow Supercritical Water Synthesis and Temperature-Dependent Defect Structure Analysis of YAG and YbAG Nanoparticles, Cryst. Growth. Des., 16 (2016) 2646-2652.
    [32] A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, R. Mahiou, Rapid synthesis of Ce3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors, New J. Chem., 36 (2012) 2493-2500.
    [33] M. Odziomek, F. Chaput, F. Lerouge, M. Sitarz, S. Parola, Highly luminescent YAG:Ce ultra-small nanocrystals, from stable dispersions to thin films, J. Mater. Chem. C, 5 (2017) 12561-12570.
    [34] W.T. Lin, Y.C. Wu, One‐pot synthesis of submicrometer‐sized Ce:YAG spherical particles by solvothermal process using alcohol solvents, J. Am. Ceram. Soc., 98 (2015) 2754-2759.
    [35] X. Ding, Y. Shi, G. Zhu, Y. Wang, Novel synthesis method of YAG: Ce3+ micron-sized powders and its luminescence properties, Mater. Chem. Phys., 147 (2014) 351-355.
    [36] G. Dantelle, M. Salaün, R. Bruyère, S. Kodjikian, A. Ibanez, Luminescent coatings prepared from optimized YAG:Ce nanoparticles, Thin Solid Films, 643 (2017) 36-42.
    [37] X. Zhang, C. Jin, Y. Zhang, N. Jia, W. He, Synthesis of spherical yttrium aluminum garnet via a mixed solvothermal method, RSC Adv., 4 (2014) 57452-57457.
    [38] S.H. Lee, D.S. Jung, J.M. Han, H.Y. Koo, Y.C. Kang, Fine-sized Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux, J. Alloy. Compd., 477 (2009) 776-779.
    [39] L. Mancic, K. Marinkovic, B. Marinkovic, M. Dramicanin, O. Milosevic, YAG:Ce3+ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution, J. Eur. Ceram. Soc., 30 (2010) 577-582.
    [40] 李姿儀, 利用添加物控制鈦酸鍶晶界結構之研究, (2017).
    [41] C.M. Ferreira, G.S. Freiria, E.H. de Faria, L.A. Rocha, K.J. Ciuffi, E.J. Nassar, Yttrium aluminum garnet coating on glass substrate, J. Lumin., 170 (2016) 686-691.
    [42] S.H. Lee, H.Y. Koo, S.M. Lee, Y.C. Kang, Characteristics of Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution, Ceram. Int., 36 (2010) 611-615.
    [43] H. Lee, S. Hong, D. Jung, Y. Kang, Y3Al5O12:Tb phosphor particles prepared by spray pyrolysis from spray solution with polymeric precursors and ammonium fluoride flux, Mater. Lett., 59 (2005) 2383-2387.
    [44] O. Milosevic, L. Mancic, M.E. Rabanal, J.M. Torralba, B. Yang, P. Townsend, Structural and luminescence properties of Gd2O3:Eu3+ and Y3Al5O12:Ce3+ phosphor particles synthesized via aerosol, J. Electrochem. Soc., 152 (2005) G707-G713.
    [45] M. Serantoni, A. Piancastelli, A.L. Costa, L. Esposito, Improvements in the production of Yb: YAG transparent ceramic materials: Spray drying optimisation, Opt. Mater., 34 (2012) 995-1001.
    [46] H.-M. Lee, C.-C. Cheng, C.-Y. Huang, The synthesis and optical property of solid-state-prepared YAG:Ce phosphor by a spray-drying method, Mater. Res. Bull., 44 (2009) 1081-1085.
    [47] J.S. Cho, K.Y. Jung, Y.C. Kang, Two-step spray-drying synthesis of dense and highly luminescent YAG:Ce3+ phosphor powders with spherical shape, RSC Adv., 5 (2015) 8345-8350.
    [48] J.S. Cho, K.Y. Jung, M.Y. Son, Y.C. Kang, Large-scale production of spherical Y2O3:Eu3+ phosphor powders with narrow size distribution using a two-step spray drying method, RSC Adv., 4 (2014) 62965-62970.
    [49] S. Balabanov, E. Gavrishchuk, V. Drobotenko, O. Palashov, E.Y. Rostokina, R. Yavetskiy, A new approach to Y3Al5O12 transparent ceramics by vacuum sintering of spray-dried xerogels, Ceram. Int., 42 (2016) 961-965.
    [50] K. Yang, J. Rong, J. Feng, Y. Zhuang, S. Tao, C. Ding, In-situ fabrication of amorphous/eutectic Al2O3–YAG ceramic composite coating via atmospheric plasma spraying, J. Eur. Ceram. Soc., 36 (2016) 4261-4267.
    [51] L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, Q. Zhang, Systematic optimization of spray drying for YAG transparent ceramics, J. Eur. Ceram. Soc., 35 (2015) 2391-2401.
    [52] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Adv. Powder Technol., 22 (2011) 1-19.
    [53] E. Lintingre, F. Lequeux, L. Talini, N. Tsapis, Control of particle morphology in the spray drying of colloidal suspensions, Soft Matter, 12 (2016) 7435-7444.
    [54] R. Vehring, W.R. Foss, D. Lechuga-Ballesteros, Particle formation in spray drying, J. Aerosol Sci., 38 (2007) 728-746.
    [55] A. Stunda-Zujeva, Z. Irbe, L. Berzina-Cimdina, Controlling the morphology of ceramic and composite powders obtained via spray drying–a review, Ceram. Int., 43 (2017) 11543-11551.
    [56] D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C. Dujardin, K. Masenelli-Varlot, Synthesis of oxide nanoparticles by pulsed laser ablation in liquids containing a complexing molecule: impact on size distributions and prepared phases, J. Phys. Chem. C, 115 (2011) 5131-5139.
    [57] S. Hassanzadeh-Tabrizi, Synthesis and luminescence properties of YAG:Ce nanopowder prepared by the Pechini method, Adv. Powder Technol., 23 (2012) 324-327.
    [58] T. Han, S. Cao, D. Zhu, C. Zhao, M. Ma, M. Tu, J. Zhang, Effects of annealing temperature on YAG:Ce synthesized by spray-drying method, Optik, 124 (2013) 3539-3541.
    [59] A. Mokhtari, M. Keyvanfard, I. Emami, Simultaneous chemiluminescence determination of citric acid and oxalic acid using multi-way partial least squares regression, RSC Adv., 5 (2015) 29214-29221.
    [60] A. Rigort, J.M. Plitzko, Cryo-focused-ion-beam applications in structural biology, Arch. Biochem. Biophys., 581 (2015) 122-130.
    [61] R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, Spectrometric identification of organic compounds, John wiley & sons2014.
    [62] R. Myuist, R. Kagel, Infrared spectra of inorganic compounds, Academic Press, New York, 1971.
    [63] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data; Physical Electronics: Eden Prairie, MN, 1995, (2000) 261.
    [64] M. Krawczyk, M. Holdynski, W. Lisowski, J. Sobczak, A. Jablonski, Electron inelastic mean free paths in cerium dioxide, Appl. Surf. Sci., 341 (2015) 196-202.
    [65] K.M. Kumar, M. Mahendhiran, M.C. Diaz, N. Hernandez-Como, A. Hernandez-Eligio, G. Torres-Torres, S. Godavarthi, L.M. Gomez, Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies, Mater. Lett., 214 (2018) 15-19.
    [66] M. Yasuda, Dissociation constants of some carboxylic acids in mixed aqueous solvents, B. Chem. Soc. Jpn., 32 (1959) 429-432.
    [67] W. Waring, Some thermodynamic properties of formic acid, Chem. Rev., 51 (1952) 171-183.
    [68] R. Wilhoit, D. Shiao, Thermochemistry of biologically important compounds. Heats of combustion of solid organic acids, J. Chem. Eng. Data, 9 (1964) 595-599.
    [69] M.S.M. Suan, M.R. Johan, Synthesis of Al2O3 nanoparticles highly distributed in YBa2Cu3O7 superconductor by citrate–nitrate auto-combustion reaction, Physica C, 492 (2013) 49-54.
    [70] S.D. Senanayake, D.R. Mullins, Redox pathways for HCOOH decomposition over CeO2 Surfaces, J. Phys. Chem. C, 112 (2008) 9744-9752.

    QR CODE