簡易檢索 / 詳目顯示

研究生: 曹嘉爲
Chia-Wei Tsao
論文名稱: WS2無機奈米管的製造與其生醫應用
WS2 Inorganic Nanotubes Synthesis and their Biomedical Application
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 陳復國
Fuh-Kuo Chen
江偉宏
Wei-Hung Chiang
林柏州
Po-Chou Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: WS2奈米管流化床反應爐普魯士藍生醫感測器
外文關鍵詞: WS2, nanotubes, CVD reactor, Prussian Blue, Biosensor
相關次數: 點閱:240下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  WS2奈米管有著許多優點,像是良好的潤滑性與熱穩定性、無毒、高模數等優點,使其可以應用於複合材料的強化項添加增加其潤滑性等應用;在先前已經有學者將奈米碳管應用於場效電晶體所製造的生醫感測器,改善其感測靈敏度及準確性,發現加入奈米碳管確實可以提升感測度與準確性。
本研究中,流化床反應爐的架設是必須的,為了達到這個目標,首先我們以CAD軟體進行流化床的外型與爐體內部的流場模擬;當流化床反應器架設完成後,測試製造WS2奈米管的最佳參數組合;本實驗中,對奈米管成型影響最大的參數是氫氣濃度與溫度;因此在實驗中會以此二參數作為主軸,測試何種參數組合可以生產出品質較佳的奈米管;製造出優質的WS2無機奈米管是本實驗的最大目標。
在本實驗中所探討的WS2奈米管製造參數,包含了不同的反應時間、反應溫度、Forming Gas 的氫氣濃度,以及Forming Gas之流速;結果發現Forming Gas的氫氣濃度由5%降低至1%對於奈米管的增長有決定性的影響,由原先的1um增長至5um;反應溫度由800℃提高至840℃也同樣可以看出奈米顆粒有明顯的增長現象;但將所製造出之奈米管進行TEM分析時,卻有硫化層不足的現象,因此將反應時間拉長後,應能得到較多硫化層的WS2奈米管。
在得到降低氫氣濃度與增加反應溫度可以增長奈米管的結果後,嘗試同時將氫氣濃度減低至1%以下以及將反應溫度增高至900℃後發現奈米管長度急遽的增長至數十微米,但奈米管直徑卻也隨之增加到1~2um了;顯現本反應爐未給予奈米管特定生長方向的驅動力,導致此結果。
基於奈米管的沉積可以改善生醫感測器電極表面積的假設,將奈米管結合普魯士藍,對於電極表面進行改質,以達到增強電極抓取鉀離子的目標。
在經過四個階段不同的測試,分別是空白碳電極、空白碳電極加上普魯士藍、空白碳電極加上WS2奈米管以及空白碳電極加上WS2奈米管再加上普魯士藍,將上述不上普魯士藍的兩種電極利用變化掃描速率的循環伏安法檢測後計算電極表面積,發現相較於只沉積普魯士藍的電極,沉積奈米管及普魯士藍的電極在電流訊號反饋的峰值並無明顯增加,可能是WS2奈米管沉積的失敗或是WS2奈米管的驅動電位大循環伏安法的電壓掃描範圍,阻礙了電流訊號的反饋。


WS2 nanotube have several advantages, such as low friction coefficient, thermal stability, and high modulus of elasticity. Such properties allowed composite materials have better performance in lubrication by adding WS2 as reinforcement. In previous research, WS2 nanotube was treated as gate in the FET, and also investigated to improve the biosensor’s sensitivity and accuracy substituting carbon nanotubes (CNTs).
In this research, Fluidized Bed Reactor was constructed. CAD and CAE software were used to design the structure and simulate the flow regime inside the reactor, respectively. The synthesis was started after reactor construction had been finish. The parameters like Hydrogen concentration and reaction temperature was tested to specify the best condition for synthesis of WS2 INTs. Synthesis parameters discussed in this research includes reaction time, reaction temperature, hydrogen concentration of forming gas, and flow rate of forming gas. During synthesis nanotubes were elongated when the concentration of H2 decrease from 5% to 1%. This factor showed huge effect on the shape of nanotubes that caused nanotubes to be elongated from 1 µm to 5 µm. The reaction temperature also affects elongation of nanotube when temperature increased from 800℃ to 840℃. However, TEM analysis shows nanorod instead of nanotube, and the sulfur layers were less than expected. But due to this result,
This research has proposed a hypothesis: Deposition of nanotubes onto electrode can increase sensing area of electrode. Prussian blue has highly sensitivity toward Potassium. Combine the Prussian blue and nanotubes to modify the electrode improving the sensitivity of electrode.
In this research, four types of electrode are produced and tested; i.e. blank electrode, blank electrode + WS2 nanotubes, blank electrode + Prussian Blue and blank electrode + Prussian blue + WS2 nanotubes. The sensitivity and sensing area will be tested and calculated by CV method. However, the results showed that WS2 nanotubes cannot improve the sensitivity due to unsuccessful deposition of WS2 nanotubes or too high WS2 nanotube’s driving voltage which is out of the scope of this experiment.

摘要.... I Abstract....... III 目錄.... V 第一章 緒論.... 1 1.1 前言.... 1 1.2 文獻回顧..2 1.2.1 現有無機奈米管製作方法及其成形機制..2 1.2.2 影響奈米管成品之製造參數介紹....... 9 1.2.3 流化床 (Fluidized Bed Reactor)設計之參考資料...... 11 1.2.4 無機奈米管製造成果參考.... 11 1.2.5 奈米材料改善生醫感測器之文獻....... 19 1.3 文獻整理心得..... 22 1.4 研究動機與目的... 23 第二章 無機奈米管相關性質及普魯士藍電化學量測...... 24 2.1 WS2無機奈米管特性........ 24 2.1.1 W原子與S原子排列方式...... 24 2.1.2 WS2各項特性..... 25 2.2 過往實驗中對於WS2奈米管XRD成分測試...28 2.3 TEM穿透式電子顯微鏡...... 29 2.4 SEM掃描式電子顯微鏡...... 30 2.5 XRD (X光繞射分析)........ 31 2.6 循環伏安法 (Cyclic Voltammetry, CV)...... 31 2.7 普魯士藍電化學特性........ 32 2.8 Randles-Sevcik formula (表面積量測)...... 33 第三章 實驗方法與步驟..... 34 3.1 實驗方式.........34 3.2 實驗流程圖....... 36 3.3 實驗材料.........38 3.4 流化床反應爐介紹..40 3.4.1 整體架構..40 3.4.2 加溫區域..42 3.4.3 排氣過濾單元......43 3.4.4 流速控制單元..... 44 3.4.5 成品收集設備..... 45 3.5 觀察設備介紹..... 45 3.5.1 SEM(掃描式電子顯微鏡).... 45 3.5.2 TEM(穿透式電子顯微鏡).... 46 3.5.3 XRD (X光繞射分析)........47 3.6 WS2無機奈米管合成製備步驟...48 3.6.1 次氧化鎢 (WO2.72) 製備步驟.....48 3.6.2 WS2奈米管製作步驟............. 49 3.7 WS2奈米管觀察所需樣品製作.......50 3.7.1 SEM樣品製作...................50 3.7.2 TEM樣品製作...................50 3.8 生醫感測器演驗設備與材料介紹....51 3.8.1 商用碳電極....................51 3.8.2 電化學分析儀..................52 3.8.3 加熱攪拌器....................52 3.8.4 化學藥品與製備步驟 .............53 3.9 生醫感測器結合WS2奈米管實驗步驟..54 3.9.1 碳電極對於鉀離子偵測能力之檢驗..54 3.9.2 碳電極結合WS2奈米管對於鉀離子偵測能力之檢測.....54 3.9.3 碳電極結合普魯士藍及WS2奈米管對鉀離子偵測能力之檢測.. 55 第四章 結果與討論....................................... 56 4.1 利用CAD CAE軟體對反應爐進行設計與模擬.............. 56 4.2 次氧化鎢製造............. 58 4.2.1 次氧化鎢合成參數......... 58 4.2.2 次氧化鎢SEM檢測.......... 59 4.2.3 次氧化鎢合成總結......... 72 4.3 硫化反應製造奈米管之成果...75 4.3.1 硫化鎢奈米管合成參數......75 4.3.2 硫化鎢奈米管品質檢測...... 76 4.3.3 WS2奈米管TEM分析圖....... 83 4.3.4 WS2奈米管合成總結........ 84 4.4 奈米管應用於生醫感測器的實驗與結果......... 87 4.4.1 空白碳電極對於鉀離子偵測能力之測試......... 87 4.4.2 空白碳電極結合普魯士藍對於鉀離子偵測能力之測試...88 4.4.3 空白碳電極結合WS2奈米管對於鉀離子偵測能力之測試...89 4.4.4 空白碳電極結合WS2奈米管以及普魯士藍對於鉀離子偵測能力測試..... 90 4.4.5 奈米管應用於生醫感測器改善表面積之總結......91 第五章 結論...... 93 第六章 未來展望.. 96 6.1 WS2奈米管...96 6.2 生醫感測器...96 參考文獻...98

[1]. S. Iijima, “Helical microtubes of Graphite Carbon”, Nature, Vol. 354, pp56-58 (1991)
[2]. R. Tenne, L. Margulis, M. Genut, and G. Hodes, ”Polyhedral and Cylindral structures of tungsten disulphide”, Nature, Vol 360, pp444-446 (1992)
[3]. A. Zak, L. S-Ecker, A. Margolin, Y. Feldman, R. P-Biro, A. A-Yaron, M. Genut, and R. Tenne, “Scaling Up of the WS2 Nanotubes Synthesis” Fullerenes Nanotubes and Carbon Nanostructures, Vol. 19, Issue. 1-2 pp18-26 (2011)
[4]. Y. Feldman, E. Wasserman, D.J.Srolovitz, R.Tenne, “High-Rate, gas Phase Growth of MoS2 Inorganic Fullerenes and Nanotubes”, Science, Vol. 267, Issue 5195, pp222-225 (1995)
[5]. Y. Feldman, A. Zak, R. P-Biro, R. Tenne, “New reactor for production of
tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticle”,
Solid State Sciences, Vol. 2, Issue. 6, pp663–672 (2000)
[6]. A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, and R. Tenne, “Growth Mechanism of MoS2 Fullerene-like Nanoparticles by Gas-Phase Synthesis”, Journal of the American Chemical Society, Vol. 122, Issue 45, pp11108-11116 (2000)
[7]. M. Remskar , Z. Skraba, M. Regula, C. Ballif, R. Sanjines, F. Levy, “New crystal structures of WS2: Microtubes, ribbons, and ropes”, Advanced Materials, Vol.10, Issue. 3, 246-249 (1998)
[8]. I. Wiesel1, H. Arbel1, A. A.Yaron, R. P. Biro, J. M. Gordon, D. Feuermann, and R. Tenne, “Synthesis of WS2 and MoS2 Fullerene-Like Nanoparticles from Solid Precursors”, Nano Research, Vol. 2, Issue. 5, pp416 424 (2009)
[9]. A. Rothschild, J. Sloan and R. Tenne, “Growth of WS2 Nanotubes Phases”, Journal of the American Chemical Society, Vol. 122, Issue. 21, pp5169-5179 (2000)
[10]. J. Li, J-D. Qiu, J-J. Xu, H-Y. Chen, and X-H. Xia “The Synergistic Effect of Prussian-Blue-Grafted Carbon Nanotube/ Poly(4-vinylpyridine) Composites for Amperometric Sensing”, Advanced Functional Material, Vol. 17, Issue. 9, pp1574–1580 (2007)
[11]. J. Zhai, Y. Zhai, D. Wen, S. Dong, “Prussian Blue/Multiwalled Carbon Nanotube Hybrids: Synthesis, Assembly and Electrochemical Behavior”, Electroanalysis, Vol. 21, Issue. 20, 2207–2212 (2009)
[12]. B.T.T.Nguyen, J.Q.Ang, C-S. Toh, “Sensitive detection of potassium ion using Prussian blue nanotube sensor”, Electrochemistry Communications, Vol. 11, Issue. 10, pp 1861–1864 (2009)
[13]. Y-Q. Zhu, W. K. Hsu, H. Terrones, N. Grobert, B. H. Chang, M. Terrones, B. Q. Wei, H. W. Kroto, D. R. M. Walton, C. B. Boothroyd, I. Kinloch, G. Z. Chen, A. H. Windled and D. J. Frayd, “Morphology, structure and growth of WS2 nanotubes”, Journal of Materials Chemistry, Vol. 10, Issue. 11, pp2570-2577 (2000)
[14]. I. K-Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner, and R. Tenne, ”On the mechanical behavior of WS2 nanotubes under axial tension and compression”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, Issue. 3, pp523-528 (2006)
[15]. Y-Q. Zhu, W-K. Hsu, N. Grobert, B-H. Chang, M. Terrones, H. Terrones, H-W. Kroto, and D-R-M. Walton, “Production of WS2 Nanotubes”, Chemistry of Materials, Vol. 12, Issue. 5, 1190-1194 (2000)
[16]. JEOL 2000FX Handbook
[17]. R. Levi, O. Bitton, G. Leitus, R. Tenne, E. Joselevich, “Field-Effect Transistors Based on WS2 Nanotubes with High Current-Carrying Capacity”, Nano Letters, Vol. 13, Issue.8, 3736-3741 (2013)

QR CODE