簡易檢索 / 詳目顯示

研究生: 石榮傑
Jung-Chieh Shih
論文名稱: 水泥瀝青膠漿應用於透水性鋪面之研究
Study on Cement Asphalt Paste Applied to Permeable Asphalt Pavement
指導教授: 沈得縣
Der-hsien Shen
口試委員: 劉明仁
Ming-jen Liu
黃兆龍
Chao-lung Huang
郭銘峰
Ming-feng Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 153
中文關鍵詞: 半剛性透水鋪面透水係數夯壓試驗法水泥瀝青膠漿
外文關鍵詞: semi-rigid permeable asphalt pavement, cement asphalt paste, laboratory compaction method, permeable coefficient
相關次數: 點閱:366下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係採用不同水泥瀝青比(C/A)之水泥瀝青膠漿作為黏結料,粒料級配係利用夯壓試驗法(ASTM D698)求得粗粒料組構之最大單位重及粗粒料間空隙率決定,並使用馬歇爾法拌製半剛性多孔隙瀝青混凝土,以評估水泥瀝青膠漿應用於半剛性透水鋪面之可行性。力學試驗結果顯示:半剛性透水鋪面之力學性質如馬歇爾穩定值、間接張力強度及直接剪力強度皆隨著齡期及C/A之增加而增加,且由於水泥瀝青膠漿感溫性較改質Ⅱ型瀝青為小,因此,半剛性透水鋪面之力學性質皆優於傳統透水鋪面。浸水馬歇爾試驗(AASHTO T165)結果顯示,半剛性透水鋪面由於水泥水化反應,致使滯留強度指數大於100%,故半剛性透水鋪面之耐久性較佳。但由Cantabria磨耗試驗結果顯示,半剛性透水鋪面之磨耗率稍高於傳統透水鋪面。在透水性方面由單層透水試驗結果顯示,半剛性透水鋪面及傳統透水鋪面之透水係數皆高於10-2cm/sec,符合透水鋪面之評估準則。車轍試驗結果顯示,半剛性透水鋪面之動穩定值較傳統透水鋪面高,因此其鋪面績效優於傳統透水鋪面。就整體而言,水泥瀝青膠漿應用於透水性鋪面具有可行性。


    The study focuses on using different cement/asphalt ratio (C/A ratio), and cement asphalt paste to be binder. The decision of aggregate gradation is depending on laboratory compaction method(by ASTM D698), maximum unit weight, and expect void in coarse aggregate. The mixture design method is following ASTM D1559 to evaluate the practicability for using cement asphalt paste applied to permeable asphalt pavement. The major finding based on result of our experimental are summarized as follows:
    The mechanic properties such as Marshall stability, indirect tension and direct shear strength increase with age and cement-asphalt ratio. Because the temperature susceptibility of cement asphalt paste is lower than traditional modified asphalt. Therefore, the mechanical properties are better than normal permeable asphalt pavement. The result of immersion compression test (AASHTO T165) demonstrated the residual strength index excess 100%, the mainly reason is test specimen on the condition of 60 ℃ will accelerating the hydration of cement. Therefore, the immersion compression strength of semi-rigid permeable asphalt pavement is better than normal permeable asphalt pavement obviously. Due to the results of Cantabria abrasion test showed that the flexibility and toughness of normal permeable asphalt pavement is better than semi-rigid permeable asphalt pavement. The permeability coefficient of semi-rigid permeable asphalt pavement and normal permeable pavement are both higher than 10-2 cm/sec, the result demonstrated that have good permeability. The result of wheel tracking test indicate the dynamic stability of semi-rigid permeable pavement is better than normal permeable asphalt pavement. Therefore, apply cement asphalt paste to permeable pavement have practicability.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅸ 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究範圍與方法 2 1-4 研究步驟與流程 3 第二章 文獻回顧 5 2-1 水泥 5 2-1-1 水化機理 5 2-1-2 影響水化反應之因素 10 2-2 界面活性劑 14 2-2-1 界面活性劑之種類 14 2-2-2 強塑劑之性質 22 2-2-3 強塑劑之反應機理 23 2-2-4 強塑劑對水泥、水泥單礦物性質之影響 28 2-3 吸附理論 35 2-3-1 等溫吸附曲線 35 2-3-2 影響吸附行為之因素 37 2-3-3 水泥、水泥單礦物與強塑劑間之吸附行為 39 2-4 乳化瀝青 42 2-5 水泥瀝青膠漿國外發展現況 45 2-6 透水性鋪面國內外發展現況 56 2-6-1 國內發展 56 2-6-2 國外發展 56 第三章 試驗材料與試驗計劃 60 3-1 試驗材料 60 3-2 乳化瀝青物性試驗 62 3-2-1 蒸發殘餘量試驗 62 3-2-2 儲存穩定性試驗 62 3-2-3 荷電試驗 63 3-2-4 靜置分離試驗 63 3-2-5 乳化瀝青固形量試驗 64 3-3 改質瀝青Ⅱ型物性試驗 65 3-3-1 針入度試驗 65 3-3-2 黏滯度試驗 65 3-3-3 軟化點試驗 66 3-3-4 薄膜加熱試驗 66 3-3-5 延展性試驗 68 3-4 水泥物性試驗 68 3-4-1 水泥比重試驗 70 3-4-2 水泥凝結時間試驗 70 3-5 粒料物性試驗 70 3-5-1 比重試驗 70 3-5-2 洛杉磯磨損試驗 71 3-5-3 扁長率試驗 71 3-5-4 健性試驗 72 3-6 日本排水性鋪裝配合設計法 72 3-7 半剛性透水性鋪面配合設計法 75 3-7-1 粒料級配設計 75 3-7-2 馬歇爾配合設計法 76 3-8 力學性質試驗 80 3-8-1 馬歇爾穩定值及流度值試驗 80 3-8-2 抗壓強度試驗 81 3-8-3 間接張力強度試驗 82 3-8-4 直接剪力強度試驗 83 3-9 鋪面績效試驗 84 3-9-1 單軸靜態潛變試驗 84 3-9-2 單軸動態潛變試驗 86 3-9-3 浸水剝脫試驗 87 3-9-4 Cantabria磨耗試驗 89 3-9-5 車轍輪跡試驗 90 3-10 透水機能試驗 93 第四章 試驗結果分析與討論 95 4-1 材料物性試驗分析 95 4-1-1 乳化瀝青 95 4-1-2 改質瀝青 98 4-1-3 拌合溫度及夯壓溫度 99 4-1-4 水泥 100 4-1-5 水泥瀝青膠漿 101 4-1-6 粒料 104 4-2 熱拌多孔隙瀝青混凝土配合設計結果分析 106 4-3 半剛性透水鋪面配合設計結果分析 110 4-3-1 粒料級配設計 110 4-3-2 馬歇爾配合設計 113 4-4 力學性質試驗結果分析 117 4-4-1 馬歇爾穩定值及流度值 117 4-4-2 抗壓強度試驗 121 4-4-3 間接張力強度 124 4-4-4 直接剪力強度 129 4-5 鋪面績效試驗結果分析 131 4-5-1 潛變試驗 131 4-5-2 浸水剝脫試驗 134 4-5-3 Cantabria磨耗試驗 137 4-5-4 車轍輪跡試驗試驗 139 4-6 透水機能試驗結果分析 142 第五章 結論與建議 144 5-1 結論 144 5-2 建議 146 參考文獻 147

    1. 陳瑞玲,“綠建築評估及標章制度”,內政部建築研究所環境控制組,民國九十年八月。
    2. 呂正宗、沈得縣,“半剛性瀝青混凝土配比與性質之研究”,國立台灣工業技術學院碩士論文,民國八十五年七月。
    3. 黃兆龍,“混凝土性質與行為”,詹氏書局,2001年10月。
    4. 李麗偵、許貫中,“化學掺料分子在水泥表面吸附之行為分子動力模擬研究”,國立台灣師範大學化學研究所碩士論文,民國八十八年六月。
    5. D.Bonen, and S.L. Sarkar, The superplasticizer adsorption capacity of cement pastes, pore solution composition and, parameters affecting flow loss, Cement and Concrete Research, Vol.25, No.7, pp.1423-1434, 1995.
    6. I. Tanaka, N. Suzuki, Y. Ono and M. Koishi, Fluidity of spherical cement and mechanism for creating high fluidity, Cement and Concrete Research, Vol.28, No.1, pp.63-74, 1998.
    7. I. Odler and R.Wonnemann, Effect of alkalies on portland cement hydration Ⅱ. Alkalies present in form of sulfates, Cement and Concrete Research, Vol. 13, pp.771-777, 1983.
    8. V.T. Yilmaz and F.P. Glasser, Early hydration of tricalcium aluminate-gypsum mixtures in the presence of sulphonated melamine formaldehyde superplasticizer, Cement and Concrete Research, Vol.21, No.5, pp.765-776, 1991.
    9. R.A. Day, Jr.and A.L. Underwood, Quantitative Analysis, 6th ed.,Prentice Hall, 1991.
    10. M. Moukwa, D. Youn, and M. Hassanali, Effects of degree of polymerization of water soluble polymers in concrete properties, Cement and Concrete Research, Vol.13, pp.122-130, 1993.
    11. P.J. Anderson and D.M. Roy, The effect of superplasticizer molecular weight on its adsorption on, and dispersion of, cement, Cement and Concrete Research, Vol.18 pp.980-986, 1988.
    12. E. Sakia and J. Sugita, Composite mechanism of polymer modified cement, Cement and Concrete Research, Vol.25, No.1, pp.127-135, 1995.
    13. J.J. Chiu, S.D. Chen and K.C. Hsu, Effect of addition time of a superplasticizwe on its cement adsorption and concrete workability, Proceedings of International Symposium on High Performance and reactive Powder Concrete, Vol.1, PP.287-299, 1998.
    14. G. Chiocchio and A.E. Paolini, Optimum time for adding superplasticizers to portland cement paste, Cement and Concrete Research, Vol.15, pp.901-908, 1985.
    15. P. Aitcin, C. Jolicqeur and J.G. MacGregar, Superplasticizers: How they work and why they occasionally don’t, Concrete international, pp.45-52, 1994.
    16. D. Larrard, A method for proportioning high-strength concrete admixture, Cement and Concrete Research, Vol.12, pp.47-52, 1990.
    17. 李鎮川,黃兆龍,“強塑劑對水泥材料基本性質影響之研究-NF型強塑劑之探討”,淡江大學建築研究所碩士論文,1986。
    18. 紀慶霖,“混凝土化學控制”,混凝土工程技術,研習會議。
    19. J-francis Young, “Concrete”, 虹橋書局, 1981.
    20. 黃兆龍,“近代混凝土科技寵物強塑劑的應用”,營建世界。
    21. “混凝土工程技術”,台灣營建中心,民國七十四年十一月。
    22. P.C. Hewlett, “The role of adimitares in concrete”.
    23. 黃兆龍,“強塑劑在混凝土之應用與發展”,營建世界,1983年12月。
    24. ASTM 1982 Annual Book of Standards, Part 14.
    25. M.R. Rixom and N.P. Mailagenam, “Chemical Admixture for Concrete ”, E. and F.N. Spon, New York, 1978.
    26. V.T. Yilmaz, A.Kindness and F.P. Glasser, “Determination of Sulphonated formaldehyde Superplasticizer in cement: A new spectrofluorimetric method and Assessment of the UU method”, C.C.R, Vol.22, pp.663-670, 1992
    27. P.C. Hewlett, “The role of admixtures in concrete”.
    28. A. Meyer, “Experiences in the Use of Superplasticizers in Germany”.
    29. C. Jolicoeur, M. Simard, Chemical admixture-cement interactions: phenomenology and physico-chemical concepts, Cement and Concrete Composites, Vol.20, pp.87-101.
    30. E. Nagele and U. Schenider, from cement to hardened paste an electrokinetic study, Cement and Concrete Research, Vol.19, pp.978-986, 1989.
    31. H. Uchikawa, S. Hanehara and D. Sawaki, The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture, Cement and Concrete Research, Vol. 27, No.1, pp.37-50, 1997.
    32. S.L. Sarkar and X. Aimin, “Preliminary Study of Very early hydration of Superplasticizer C3A+Gypsum by Environmental SE”, C.C.R, Vol.22, pp.608-708, 1992.
    33. Hiroshi Vchikawa et al, “Effect of admixture on Hydration of Cement, adsorptive behavior of admixture and fluidity and setting of fresh Cement paste ”, C.C.R, Vol.22, pp.1115-1129, 1992.
    34. I. Odler and J. Schuppstuhl, “Early Hydration of Tricalcium Silicate, Control of the Induction Period ”, C.C.R, Vol.11, pp.765-774, 1981.
    35. N.B. Singh, R. Sarvahi and N.P. Singh, “Effect of Superplasticizers on the Hydration of cement”, C.C.R, Vol.22, pp.725-735, 1992.
    36. M.A. Simnrd, P.C. Nkinamubanzi, C. Jolicoevr, “Calorimetry, rheology and Compressive Strength of Superplasticizer Cement Pastes“, C.C.R, Vol.23, pp.939-950, 1993.
    37. P. Kumar Mehta, “Concrete structure, properties and materials”, pp.170-220.
    38. S. Mindess and J. Francis Young, “Concrete” pp.76-112.
    39. 曾迪華,國立中央大學環工所講義,民國七十六年。
    40. 黃偉慶,“精密儀器”,國立中央大學土木所講義,民國八十四年。
    41. F.M Lea, “The Chemistry of Portland Cement”, third edition, pp.158-250.
    42. 蔡攀鰲,“瀝青混凝土”,三民書局,1984年
    43. 沙愛民,“半剛性路面材料結構與性能”,人民交通出版社,1998年4月。
    44. 黎瑞玲,“強塑劑對C3A及水泥水化行為影響之研究”,國立中央大學土木工程研究所碩士論文,民國八十四年六月。
    45. 鐵道部第一工程局,“鐵路工程施工技術手冊”,中國鐵道出版社,2000年(北京)。
    46. Nadia Pouliot, Jacques Marchand, and Michael Pigeon, “Hydration Mechanisms, Microstructure, and Mechanical Properties of Mortars Prepared with Mixed Binder Cement Slurry-Asphalt Emulsion.” Journal of materials in civil engineering, January.
    47. 沈美毅,“廢棄混凝土再利用於開放級配與多孔隙瀝青混凝土之研究”,淡江大學土木工程學系碩士論文,民國九十一年十二月。
    48. 日本道路協會,“排水性鋪裝技術指針”,民國七十八年。
    49. 日本道路協會,“鋪裝試驗法便覽”。
    50. FHWA, “Standard Specification for Construction of Roads and Bridges on federal Highway projects.”
    51. 林志棟、黃裔炎、高均約,“開放級配應用於高速公路路面改善研究”,交通部台灣區國道新建工程局,民國八十八年六月。
    52. The Asphalt Institute, “Mix Design Method for Asphalt Concrete,” Manual Series No.2(MS-2)。
    53. 沈得縣,“多孔隙瀝青混凝土路面之設計與施工”,材料科技在營建工程之應用研討會論文集~2000年近代營建工程研討會系列二,民國八十九年四月,第149~172頁
    54. Vavrik, W.R., R.J. Fries and S.H. Carpenter, “Effect of Flat and Elongated Coarse Aggregate on Characteristic of Gyratory Compacted Samples,” Transportation Research 1961, 1999, pp.28~36.
    55. Stephens, J.E. and K.C. Sinha, “Effect of Aggregate Shape on Bituminous Mix Character,” Proceeding of Association of Asphalt Paving Technologists, Vol.47, 1978, pp.434~456.
    56. 林峰永,“多孔隙瀝青混凝土永久變形特性之試驗室研究”,淡江大學土木工程學系碩士論文,民國八十九年六月。
    57. 劉守益,“多孔隙瀝青混凝土成效之評估”,,國立中央大學土木工程研究所碩士論文,民國八十五年。
    58. 曾信智,“多孔隙瀝青混凝土之水份侵害特性研究”,淡江大學土木工程研究所碩士論文,民國八十九年。
    59. 蘇育民,“瀝青膠漿性質對於排水性瀝青混凝土成效之影響”,中央大學土木工程研究所碩士論文,民國九十一年。
    60. 吳學禮,“鋪面、材料工程實務”,詹氏書局,民國九十年三月。
    61. 呂正宗,“陽離子乳化瀝青與水泥混合穩定機理之探討”,表面物理化學期末報告。

    QR CODE