簡易檢索 / 詳目顯示

研究生: 吳得峻
Te-Chun Wu
論文名稱: 高效率有機發光二極體元件:非銦鍚氧化物、倒置型、上發光之元件結構開發
Development of ITO-Free, Inverted, and Top-Emitting Structures for High-Efficiency Organic Light-Emitting Diodes
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 倒置頂部發光有機發光二極體介電/金屬/介電結構微共振腔結構柔性有機發光二極體有機太陽能耦合器
外文關鍵詞: ITOLED, dielectric/metal/dielectric, micro cavity, flexible OLED, organic photocoupler
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中我們聚焦在開發一種高效率倒置型上發光的可撓性有機發光二極體 (organic light emitting diode,簡稱OLED)元件結構。首先我們在玻璃基板上進行元件結構優化,我們以具有可撓性的厚銀作為該元件之底部電極取代常用的銦錫氧化物 (indium tin oxide,簡稱ITO),以及介電質/薄金屬/介電質 (dielectric/metal/ dielectric,簡稱DMD)結構作為頂部陽極。我們調整元件的電子注入層條件,並在這之中我們觀察到此系列上發光元件具有強烈的微共振腔效應,兩電極間的總厚度變化對於元件的電致發光 (electroluminescence,簡稱EL)光譜以及效率產生巨大影響,因此我們也對元件的內部與外部光學結構進行優化,其中以使用有機材料N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB)作為外部介電質覆蓋層 (capping layer)之元件具有最好的效率表現,且適當的覆蓋層 (capping layer)厚度能夠抑制元件的微共振腔效應。即便透過以上優化,我們所開發的上發光元件依然受到一定程度的微共振腔效應影響,因此我們進一步透過變角度EL光譜量測其光場分布並對元件效率進行校正。經過校正後我們成功實現出一EL效率與下發光標準元件相仿的倒置型上發光元件。同時,該元件於定電壓3 V下之連續操作下亮度衰退至起始亮度之75%之壽命為200小時。
隨後我們將該最佳化元件製作於可撓性高分子聚一氯對二甲苯 (parylene-C)基板上,該元件於輔助基板上以及從輔助基板上剝離後的EL效率相仿,驗證了我們提出之元件架構之可行性。
最後我們將此元件與有機光感測器 (organic photo-detector,簡稱OPD)組合成一有機光耦合器 (organic photocoupler,簡稱OPC),其電流轉效率達到2.54%。


In this paper, we focus on developing a high-efficiency inverted organic light emitting diode (OLED) device structure with flexibility. Firstly, we optimize the device structure on a glass substrate, and we replace the commonly used indium tin oxide (ITO) with flexible thick silver as the bottom electrode of the device, and use a dielectric/metal/dielectric (DMD) structure as the top anode. We adjust the conditions of the electron injection layer in the device and observe a strong microcavity effect in this series of emitting devices. The total thickness variation between the two electrodes has a significant impact on the electroluminescence (EL) spectrum and efficiency of the device. Therefore, we optimize the internal and external optical structures of the device. The device using the organic material N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as the capping layer exhibits the best efficiency performance, and an appropriate capping layer thickness can suppress the microcavity effect of the device. Even with the aforementioned optimizations, the developed emitting device is still affected by a certain degree of microcavity effect, so we further measure the light field distribution of the device through angle-dependent EL spectroscopy and correct the device efficiency. After correction, we successfully achieve an EL efficiency comparable to that of conventional emitting standard devices in the inverted emitting device. Furthermore, the device exhibits a lifetime of 200 hours with the continuous operation at a constant voltage of 3 V, with the brightness fading to 75% of the initial brightness.
Subsequently, we fabricate the optimized device on a flexible polymer substrate of parylene-C. The device exhibits similar EL efficiency both on the auxiliary substrate and after being peeled off from the auxiliary substrate, validating the feasibility of the proposed device structure.
Finally, we combine this device with an organic photodetector (OPD) to form an organic photocoupler (OPC), achieving a current conversion efficiency of 2.54%.

中文摘要 ...................................................................... III ABSTRACT ..................................................................... IV 誌謝 ........................................................................ V 目錄 ......................................................................... VI 圖索引 ..................................................................... IX 表索引 ......................................................................... XII 第一章 緒論 ................................................................ 1 1-1 前言 .................................................................. 1 1-2 有機發光元件發展史 ............................................ 2 第二章 文獻回顧 ............................................................... 5 2-1 ITO free之應用 ......................................................... 5 2-2 黃光元件 .................................................................. 7 2-3 製備高性能OLED ............................................... 8 2-3-1 激基複合物 ................................................... 8 2-3-2 電子注入層 .......................................................... 9 2-4 有機發光二極體之物理機制................................... 11 2-4-1 基礎理論 .................................................... 11 2-4-2 電致發光原理 .............................................. 12 2-4-3 主客體發光機制 .......................................... 12 2-4-4 微共振腔現象 .............................................. 15 2-5 研究動機與目的 ...................................................... 16 第三章 製程介紹 .................................................................. 17 3-1 實驗設備 ........................................................ 17 3-1-1 3D印表機 .......................................................... 17 3-1-2 超音波振盪機 .............................................. 17 3-1-3 溫控加熱板 ............................................. 18 3-1-4 曝光機 ........................................................ 19 3-1-5 材料昇華系統 ................................................ 19 3-1-6 氮氣手套箱 .................................................. 20 3-1-7 濺鍍機 ............................................................ 21 3-1-8 熱蒸鍍機 ........................................................... 21 3-1-9 雷雕機 ................................................................. 22 3-1-10 原子層沉積系統 ........................................ 23 3-1-11 化學氣相沉積系統 .............................................. 23 3-2 實驗流程 ...................................................................... 24 3-2-1 前清洗 ............................................................ 24 3-2-2 熱蒸鍍製程 ......................................................... 25 3-2-3 基板封裝 .......................................................... 26 3-2-4 化學氣相沉積系統 .................................... 27 3-2-5 原子層沉積系統 ..................................................... 27 3-3 分析設備 ............................................................. 28 3-3-1 探針式膜厚儀 (α-step) ....................................... 28 3-3-2 橢偏儀 ...................................................... 28 3-3-3 輝度計 .......................................................... 29 3-3-4 積分球 ................................................................ 30 3-3-5 lifetime系統 ................................................. 30 3-3-6 變角度分析 ..................................................... 31 3-4 實驗材料 ............................................................. 32 第四章 實驗結果與討論 ............................................. 34 4-1 標準正置型黃光元件 .............................................. 34 4-2 倒置型黃光元件 ............................................... 36 4-2-1 電子注入層測試 .......................................... 36 4-2-2 微共振腔厚度優化 ....................................... 40 4-2-3 覆蓋膜應用 .............................................. 42 4-3 變角度分析 ................................................................ 46 4-4 lifetime量測 ................................................. 50 4-5 相關應用 ......................................................... 51 第五章 結果與未來展望 ...................................................... 58 參考文獻59

[1] Tomoyuki Yokota , Peter Zalar, Martin Kaltenbrunner, Hiroaki Jinno, Naoji Matsuhisa, Hiroki Kitanosako, Yutaro Tachibana, Wakako Yukita, Mari Koizumi, and Takao Someya,“Ultraflexible organic photonic skin.”, Science advances. 2(4): p. e1501856 (2016).
[2] Dion Khodagholy, Jennifer N Gelinas, Thomas Thesen, Werner Doyle, Orrin Devinsky, George G Malliaras and György Buzsáki,“NeuroGrid: recording action potentials from the surface of the brain.", Nature neuroscience. 18(2): p. 310-315 (2015).
[3] Youngwan Kim, Christopher Choi, En-Chen Chen, Andy G. S. Daniel, Amrita Masurkar, Theodore H. Schwartz and Hongtao Ma,“An ultra thin implantable system for cerebral blood volume monitoring using flexible OLED and OPD.”, IEEE International Electron Devices Meeting (IEDM) (2015).
[4] S.K. Attili, A. Lesar, A. McNeill, M. Camacho‐Lopez, H. Moseley, S. Ibbotson, I.D.W. Samuel and J. Ferguson,“An open pilot study of ambulatory photodynamic therapy using a wearable low‐irradiance organic light‐emitting diode light source in the treatment of nonmelanoma skin cancer.”, British Journal of Dermatology. 161(1): p. 170-173 (2009).
[5] Han Eol Lee, Seung Hyun Lee, Minju Jeong, Jung Ho Shin, Yuri Ahn, Daesoo Kim, Sang Ho Oh, Seok Hyun Yun and Keon Jae Lee,“Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes.”, ACS nano. 12(9): p. 9587-9595 (2018).
[6] Ralph Paetzold, Karsten Heuser, Debora Henseler, Stephan Roeger, Georg Wittmann and Albrecht Winnacker,“Performance of flexible polymeric light-emitting diodes under bending conditions.”, Applied Physics Letters. 82(19): 3342-3344 (2003).
[7] Hai-Wei Chen, Jiun-Haw Lee, Bo-Yen Lin, Stanley Chen and Shin-Tson Wu,“Liquid crystal display and organic light-emitting diode display: present status and future perspectives.”, Light: Science & Applications. 7(3): p. 17168-17168 (2018).
[8] N. Thejo Kalyani and S.J. Dhoble,“Organic light emitting diodes: Energy saving lighting technology—A review.”, Renewable and Sustainable Energy Reviews. 16(5): p. 2696-2723 (2012).
[9] Changmin Keum, Caroline Murawski, Emily Archer, Seonil Kwon, Andreas Mischok and Malte C. Gather,“A substrateless, flexible, and water-resistant organic light-emitting diode.”, Nature communications. 11(1): p. 6250 (2020).
[10] M. Pope, H. P. Kallmann and P. Magnante,“Electroluminescence in organic crystals.”, The Journal of Chemical Physics. 38(8): p. 2042-2043 (1963).
[11] C. W. Tang and S. A. VanSlyke,“Organic electroluminescent diodes.”, Applied physics letters. 51(12): p. 913-915 (1987).
[12] C. W. Tang, S. A. VanSlyke and C. H. Chen,“Electroluminescence of doped organic thin films.”, Journal of applied physics. 65(9): p. 3610-3616 (1989).
[13] Y Okuda, H Ochi and M Tsuchida,“Driving circuit for organic LED dot-matrix display.”, in Conference Proceedings. 10th Annual Meeting IEEE Lasers. (1997).
[14] Y Okuda, H Ochi T Yamamura, M Kitamura, K Kuribayashi, Y Arakawa, S Takeuchiand M Tsuchida,“Flexible organic leds with parylene thin films for biological implants.”, IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE (2007).
[15] Andreas Haldi, Alpay Kimyonok, Benoit Domercq, Lauren E. Hayden, Simon C. Jones, Seth R. Marder, Marcus Weck and Bernard Kippelen,“Optimization of orange‐emitting electrophosphorescent copolymers for organic light‐emitting diodes.”, Advanced Functional Materials. 18(19): 3056-3062 (2008).
[16] Soniya D. Yambem, Kang-Shyang Liao, Nigel J. Alley and Seamus A. Curran,“Stable organic photovoltaics using Ag thin film anodes.”, Journal of Materials Chemistry. 22(14): 6894-6898 (2012).
[17] Robert C. Tenent, Teresa M. Barnes, Jeremy D. Bergeson, Andrew J. Ferguson, Bobby To, Lynn M. Gedvilas, Michael J. Heben and Jeffrey L. Blackburn,“Ultrasmooth, large‐area, high‐uniformity, conductive transparent single‐walled‐carbon‐nanotube films for photovoltaics produced by ultrasonic spraying.”, Advanced Materials. 21(31): 3210-3216 (2009).
[18] Tae-Hee Han, Youngbin Lee, Mi-Ri Choi, Seong-Hoon Woo, Sang-Hoon Bae, Byung Hee Hong, Jong-Hyun Ahn and Tae-Woo Lee,“Extremely efficient flexible organic light-emitting diodes with modified graphene anode.”, Nature Photonics. 6(2): 105-110 (2012).
[19] Neil C. Greenham, Dr. Richard H. Friend and Dr. Donal D. C. Bradley,“Angular dependence of the emission from a conjugated polymer light‐emitting diode: implications for efficiency calculations.”, Advanced Materials. 6(6): 491-494(1994).
[20] Soon Moon Jeong, Fumito Araoka, Yoshimi Machida, Yoichi Takanishi, Ken Ishikawa, Hideo Takezoe, Suzushi Nishimura and Goro Suzaki,“Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nanoimprinted periodic structures using sequential surface relief grating.”, Japanese journal of applied physics. 47(6R): 4566 (2008).
[21] M.-H. Lu, M. S. Weaver; T. X. Zhou, M. Rothman; R. C. Kwong, M. Hack and J. J. Brown,“High-efficiency top-emitting organic light-emitting devices.”, Applied Physics Letters. 81(21): 3921-3923 (2002).
[22] Kihyon Hong, Hak Ki Yu, Ilhwan Lee, Kisoo Kim, Sungjun Kim and Jong-Lam Lee,“Enhanced Light Out‐Coupling of Organic Light‐Emitting Diodes: Spontaneously Formed Nanofacet‐Structured MgO as a Refractive Index Modulation Layer.”, Advanced Materials. 22(43): 4890-4894 (2010).
[23] Yiru Sun and Stephen R. Forrest,“Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids.”, Nature Photonics. 2(8): 483-487 (2008).
[24] Soniya D. Yambem, Mujeeb Ullah, Kristen Tandy, Paul L. Burn and Ebinazar B. Namdas,“ITO‐free top emitting organic light emitting diodes with enhanced light out‐coupling.”, Laser & Photonics Reviews. 8(1): p. 165-171 (2014).
[25] Hyunsu Cho, Changhun Yun, Jae-Woo Park and Seunghyup Yoo,“Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes.”, Organic Electronics. 10(6):1163-1169 (2009).
[26] Baolin Tian, Graeme Williams, Dayan Ban and Hany Aziz,“Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode.”, Journal of applied physics. 110(10) (2011).
[27] Shun-Wei Liu, Tsung-Hao Su, Po-Chien Chang, Tzu-Hung Yeh, Ya-Ze Li, Ling-Jie Huang, Yu-Hui Chen and Chun-Feng Lin,“ITO-free, efficient, and inverted phosphorescent organic light-emitting diodes using a WO3/Ag/WO3 multilayer electrode.”, Organic electronics. 31: p. 240-246 (2016).
[28] Tzu-Hung Yeh, Chih-Chien Lee, Chun-Jen Shih , Gautham Kumar, Sajal Biring and Shun-Wei Liu,“Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes.”, Organic Electronics. 59: p. 266-271 (2018).
[29] Guohua Xie, Zhensong Zhang, Qin Xue, Shiming Zhang, Li Zhao, Yang Luo, Ping Chen, Baofu Quan, Yi Zhao and Shiyong Liu,“Highly efficient top-emitting white organic light-emitting diodes with improved contrast and reduced angular dependence for active matrix displays.”, Organic Electronics. 11(12): 2055-2059 (2010).
[30] Hao Chen, Juan He, Raymond Lanzafame, Istvan Stadler, Hamid El Hamidi, Hui Liu, Jonathan Celli, Michael R. Hamblin, Yingying Huang, Emily Oakley, Gal Shafirstein, Ho-Kyoon Chung, Shin-Tson Wu and Yajie Dong,“Quantum dot light emitting devices for photomedical applications.”, Journal of the Society for Information Display. 25(3): 177-184 (2017).
[31] Manuel A Triana, Adriana A Restrepo, Raymond J Lanzafame, Peter Palomaki and Yajie Dong,“Quantum dot light-emitting diodes as light sources in photomedicine: photodynamic therapy and photobiomodulation.”, Journal of Physics: Materials. 3(3): 032002 (2020).
[32] Cheng Lian, Marta Piksa, Kou Yoshida, Saydulla Persheyev, Krzysztof J. Pawlik, Katarzyna Matczyszyn and Ifor D. W. Samuel,“Flexible organic light-emitting diodes for antimicrobial photodynamic therapy.”, npj Flexible Electronics. 3(1): 18 (2019).
[33] Vinh Van Tran, Minhe Chae, Ju-Young Moon and Young-Chul Lee,“Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: Recent applications, challenges, and perspectives.”, Optics & Laser Technology. 135: 106698 (2021).
[34] Dongdong Zhang, Minghan Cai, Yunge Zhang, Zhengyang Bin, Deqiang Zhang and Lian Duan,“Simultaneous enhancement of efficiency and stability of phosphorescent OLEDs based on efficient Forster energy transfer from interface exciplex.”, ACS Applied Materials & Interfaces. 8(6): p. 3825-3832 (2016).
[35] Kenichi Goushi, Kou Yoshida, Keigo Sato and Chihaya Adachi,“Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion.”. Nature Photonics. 6(4): p. 253-258 (2012).
[36] Jeong-Hwan Lee, Orcid, Hyun Shin, Jae-Min Kim, Kwon-Hyeon Kim and Jang-Joo Kim,“Exciplex-forming co-host-based red phosphorescent organic light-emitting diodes with long operational stability and high efficiency.”, ACS Applied Materials & Interfaces. 9(4): p. 3277-3281 (2017).
[37] Yan-Hong Deng, Yan-Qing Li, Qing-Dong Ou, Qian-Kun Wang, Fu-Zhou Sun, Xiang-Yu Chen and Jian-Xin Tang,“The doping effect of cesium-based compounds on carriertransport and operational stability in organic light-emitting diodes.”, Organic electronics. 15(6): p. 1215-1221 (2014).
[38] Dong-Ying Zhou, Feng-Shuo Zu, Ying-Jie Zhang, Xiao-Bo Shi, Hany Aziz and Liang-Sheng Liao,“Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant.”, Applied Physics Letters. 105(8): p. 132_1 (2014).
[39] Chih-Hao Chang, Ming-Kuan Hsu, Szu-Wei Wu, Mei-Hsin Chen, Hung-Hsuan Lin, Chia-Shou Li, Tun-Wen Pi, Hsin-Hua Chang and Nien-Po Chen,“Using lithium carbonate-based electron injection structures in high-performance inverted organic light-emitting diodes.”, Physical Chemistry Chemical Physics. 17(19): p. 13123-13128 (2015).
[40] Yi-Yeol Lyu, Jeonghun Kwak, Woo Sung Jeon, Younghun Byun, Hyo Sug Lee, Doseok Kim, Changhee Lee and Kookheon Char,“Highly efficient red phosphorescent OLEDs based on non‐conjugated silicon‐cored spirobifluorene derivative doped with Ir‐complexes.”, Advanced Functional Materials. 19(3): p. 420-427 (2009).
[41] Th. Főrster,“10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation.”, Discussions of the Faraday Society. 27: p. 7-17 (1959).
[42] Minrong Zhu and Chuluo Yang,“Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes.”, Chemical Society Reviews. 42(12):p. 4963-4976 (2013).
[43] D. L. Dexter,“A theory of sensitized luminescence in solids.”, The journal of chemical physics. 21(5): p. 836-850 (1953).
[44] D. L. Dexter and James H. Schulman,“Theory of concentration quenching in inorganic phosphors.”. The Journal of Chemical Physics. 22(6): p. 1063-1070 (1954).
[45] Ekraj Dahal, David Allemeier, Benjamin Isenhart, Karen Cianciulli and Matthew S. White,“Characterization of higher harmonic modes in Fabry–Pérot microcavity organic light emitting diodes.”, Scientific reports. 11(1): p. 8456 (2021).
[46] D.W. Berreman,“Optics in stratified and anisotropic media: 4× 4-matrix formulation.”. Josa. 62(4): p. 502-510 (1972).
[47] Xiong, S., et al.,“Atomic layer deposition for membrane modification, functionalization and preparation: A review.”, Journal of Membrane Science. 658: 120740 (2022).
[48] Sen Xiong, Xiaofeng Qian, Zhaoxiang Zhong and Yong Wang,“Simple and practical methods for utilizing parylene C film based on vertical deposition and laser patterning.”, Scientific reports. 12(1): 9506 (2022).
[49] Çağlar Çetinkaya, Erman Çokduygulular, Feyza Güzelçimen and Barış Kınacı,“Functional optical design of thickness-optimized transparentconductive dielectric-metal-dielectric plasmonic structure.”, Scientific reports12(1): 8822 (2022).
[50] Yali Deng, Changmin Keum, Sabina Hillebrandt, Caroline Murawski and Malte C. Gather,“Improving the thermal stability of top‐emitting organic light‐emitting diodes by modification of the anode interface.”, Advanced Optical Materials. 9(14): 2001642 (2021).
[51] Emily Archer, Sabina Hillebrandt, Changmin Keum, Caroline Murawski, Jan Murawski, Francisco Tenopala-Carmona and Malte C. Gather,“Accurate Efficiency Measurements of Organic Light‐Emitting Diodes via Angle‐Resolved Spectroscopy.”, Advanced Optical Materials. 9(1): 2000838 (2021).
[52] Richie Estrada, Dian Luo, Chih-Chien Lee, Johan Iskandar, Sajal Biring, Nurul Ridho Al Amin, Abdul Khalik Akbar, Chih-Hsin Chen, Chang-Wei Yu, Tran My Dung Phamb and Shun-Wei Liu,“Developing efficient small molecule-based organic photo-couplers by optimizing the cathode interfacial layer in the photodetector.”, Journal of Materials Chemistry C. 11(16): 5378-5387 (2023).

無法下載圖示 全文公開日期 2025/07/31 (校內網路)
全文公開日期 2025/07/31 (校外網路)
全文公開日期 2025/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE